主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci)

本文主要是介绍主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 主题建模
        • 潜在迪利克雷分配(LDA)
        • 一致性得分 coherence score
          • 1. CV 一致性得分
          • 2. UMass 一致性得分
          • 3. UCI 一致性得分
          • 4. Word2vec 一致性得分
          • 5. 选择最佳一致性得分

主题建模

主题建模是一种机器学习和自然语言处理技术,用于确定文档中存在的主题。它能够确定单词或短语属于某个主题的概率,并根据它们的相似度或接近度对文档进行聚类。它通过分析文档中单词和短语的频率来实现这一目的。 主题建模的一些应用还包括文本摘要、推荐系统、垃圾邮件过滤器等。

具体来说,目前用于提取主题模型的方法包括潜狄利克特分配法(LDA)、潜语义分析法(LSA)、概率潜语义分析法(PLSA)和非负矩阵因式分解法(NMF)。我们将重点讨论潜狄利克特分配(LDA)的一致性得分。

潜在迪利克雷分配(LDA)

Latent Dirichlet Allocation 是一种无监督的机器学习聚类技术,我们通常将其用于文本分析。它是一种主题建模,其中单词被表示为主题,而文档则被表示为这些单词主题的集合。

总之,这种方法通过几个步骤来识别文档中的主题:

  1. 抽取主题–在主题空间中初始化文档的 Dirichlet 分布,并从文档主题的多叉分布中选择 N 个主题。
  2. 抽取单词并创建文档 - 在单词空间中初始化主题的 Dirichlet 分布,并从主题上单词的多项式分布中为每个先前抽取的主题选择 N 个单词。
  3. 最大化创建相同文档的概率。
    上述算法的数学定义为

在这里插入图片描述

其中 α \alpha α β \beta β 定义了 Dirichlet 分布, θ \theta θ ϕ \phi ϕ 定义了多叉分布, Z Z Z 是包含所有文档中所有单词的主题向量, W W W 是包含所有文档中所有单词的向量, M M M 个文档数, K K K 个主题数和 N N N 个单词数。

我们可以使用吉布斯采样(Gibbs sampling)来完成整个训练或概率最大化的过程,其总体思路是让每个文档和每个单词尽可能地单色。基本上,这意味着我们希望每篇文档的文章数越少越好,每个词属于的主题数越少越好。

一致性得分 coherence score

在主题建模中,我们可以使用一致性得分来衡量主题对人类的可解释性。在这种情况下,主题表示为属于该特定主题概率最高的前 N 个词。简而言之,一致性得分衡量的是这些词之间的相似程度。

1. CV 一致性得分

最流行的一致性度量之一被称为 CV。它利用词的共现创建词的内容向量,然后利用归一化点式互信息(NPMI)和余弦相似度计算得分。这个指标很受欢迎,因为它是 Gensim 主题一致性pipeline模块的默认指标,但它也存在一些问题。即使是该指标的作者也不推荐使用它。

不推荐使用 CV 一致性度量。

2. UMass 一致性得分

我们建议使用 UMass 一致性评分来代替 CV 评分。它计算两个词 w i w_{i} wi w j w_{j} wj 在语料库中同时出现的频率,其定义为
在这里插入图片描述

其中, D ( w i , w j ) D(w_{i}, w_{j}) D(wi,wj) 表示单词 w i w_{i} wi w j w_{j} wj 在文档中同时出现的次数, D ( w i ) D(w_{i}) D(wi) 表示单词 w i w_{i} wi 单独出现的次数。数字越大,一致性得分越高。此外,这一指标并不对称,也就是说 C U M a s s ( w i , w j ) C_{UMass}(w_{i}, w_{j}) CUMass(wi,wj)不等于 C U M a s s ( w j , w i ) C_{UMass}(w_{j}, w_{i}) CUMass(wj,wi)。我们用描述主题的前 N 个词的平均成对一致性得分来计算主题的全局一致性。

3. UCI 一致性得分

该一致性得分基于滑动窗口和所有词对的点互信息,使用出现率最高的 N 个词。我们不计算两个词在文档中出现的频率,而是使用滑动窗口计算词的共现。也就是说,如果我们的滑动窗口大小为 10,那么对于一个特定的词 w i w_{i} wi,我们只能观察到词 w i w_{i} wi 前后的 10 个词。

因此,如果单词 w i w_{i} wi w j w_{j} wj 同时出现在文档中,但它们没有同时出现在一个滑动窗口中,我们就不认为它们是同时出现的。同样,对于 UMass 分数,我们将单词 w i w_{i} wi w j w_{j} wj 之间的 UCI 一致性定义为

在这里插入图片描述

其中, P ( w ) P(w) P(w) 是在滑动窗口中看到单词 w 的概率, P ( w i , w j ) P(w_{i}, w_{j}) P(wi,wj)是单词 w i w_{i} wi w j w_{j} wj 在滑动窗口中同时出现的概率。在原论文中,这些概率是使用 10 个单词的滑动窗口,从 200 多万篇英文维基百科文章的整个语料库中估算出来的。我们计算话题全局一致性的方法与计算 UMass 一致性的方法相同。

4. Word2vec 一致性得分

一个聪明的想法是利用 word2vec 模型来计算一致性得分。这将在我们的得分中引入单词的语义。基本上,我们希望根据两个标准来衡量一致性:

主题内相似性–同一主题中词语的相似性。
主题间相似性–不同主题中词语的相似性。
这个想法非常简单。我们希望主题内相似度最大化,主题间相似度最小化。此外,我们所说的相似性是指 word2vec 嵌入所代表的词与词之间的余弦相似性。

然后,我们计算每个主题的主题内相似度,即该主题中每对可能的前 N 个词之间的平均相似度。随后,我们计算两个主题之间的主题间相似度,即这两个主题中前 N 个词之间的平均相似度。

最后,两个主题 t i t_{i} ti t j t_{j} tj 之间的 word2vec 一致性得分计算公式为
在这里插入图片描述

5. 选择最佳一致性得分

**没有一种方法可以确定一致性得分的好坏。**得分及其价值取决于计算数据。例如,在一种情况下,0.5 的分数可能足够好,但在另一种情况下则不可接受。唯一的规则是,我们要最大限度地提高这个分数。

通常,一致性得分会随着主题数量的增加而增加。随着主题数量的增加,这种增加会变得越来越小。可以使用所谓的肘部技术来权衡主题数量和一致性得分。这种方法意味着将一致性得分绘制成主题数量的函数。我们利用曲线的肘部来选择主题数量。

这种方法背后的理念是,我们要选择一个点,在这个点之后,一致性得分的递减增长不再值得额外增加主题数。n_topics = 3 时的肘截点示例如下:
在这里插入图片描述

elbow rule
此外,一致性得分取决于 LDA 超参数,如 α \alpha α β \beta β K K K。毕竟,手动验证结果是很重要的,因为一般来说,无监督机器学习系统的验证工作都是由人工完成的。

这篇关于主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390911

相关文章

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

电脑不小心删除的文件怎么恢复?4个必备恢复方法!

“刚刚在对电脑里的某些垃圾文件进行清理时,我一不小心误删了比较重要的数据。这些误删的数据还有机会恢复吗?希望大家帮帮我,非常感谢!” 在这个数字化飞速发展的时代,电脑早已成为我们日常生活和工作中不可或缺的一部分。然而,就像生活中的小插曲一样,有时我们可能会在不经意间犯下一些小错误,比如不小心删除了重要的文件。 当那份文件消失在眼前,仿佛被时间吞噬,我们不禁会心生焦虑。但别担心,就像每个问题

十五.各设计模式总结与对比

1.各设计模式总结与对比 1.1.课程目标 1、 简要分析GoF 23种设计模式和设计原则,做整体认知。 2、 剖析Spirng的编程思想,启发思维,为之后深入学习Spring做铺垫。 3、 了解各设计模式之间的关联,解决设计模式混淆的问题。 1.2.内容定位 1、 掌握设计模式的"道" ,而不只是"术" 2、 道可道非常道,滴水石穿非一日之功,做好长期修炼的准备。 3、 不要为了

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

Steam邮件推送内容有哪些?配置教程详解!

Steam邮件推送功能是否安全?如何个性化邮件推送内容? Steam作为全球最大的数字游戏分发平台之一,不仅提供了海量的游戏资源,还通过邮件推送为用户提供最新的游戏信息、促销活动和个性化推荐。AokSend将详细介绍Steam邮件推送的主要内容。 Steam邮件推送:促销优惠 每当平台举办大型促销活动,如夏季促销、冬季促销、黑色星期五等,用户都会收到邮件通知。这些邮件详细列出了打折游戏、

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多