主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci)

本文主要是介绍主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 主题建模
        • 潜在迪利克雷分配(LDA)
        • 一致性得分 coherence score
          • 1. CV 一致性得分
          • 2. UMass 一致性得分
          • 3. UCI 一致性得分
          • 4. Word2vec 一致性得分
          • 5. 选择最佳一致性得分

主题建模

主题建模是一种机器学习和自然语言处理技术,用于确定文档中存在的主题。它能够确定单词或短语属于某个主题的概率,并根据它们的相似度或接近度对文档进行聚类。它通过分析文档中单词和短语的频率来实现这一目的。 主题建模的一些应用还包括文本摘要、推荐系统、垃圾邮件过滤器等。

具体来说,目前用于提取主题模型的方法包括潜狄利克特分配法(LDA)、潜语义分析法(LSA)、概率潜语义分析法(PLSA)和非负矩阵因式分解法(NMF)。我们将重点讨论潜狄利克特分配(LDA)的一致性得分。

潜在迪利克雷分配(LDA)

Latent Dirichlet Allocation 是一种无监督的机器学习聚类技术,我们通常将其用于文本分析。它是一种主题建模,其中单词被表示为主题,而文档则被表示为这些单词主题的集合。

总之,这种方法通过几个步骤来识别文档中的主题:

  1. 抽取主题–在主题空间中初始化文档的 Dirichlet 分布,并从文档主题的多叉分布中选择 N 个主题。
  2. 抽取单词并创建文档 - 在单词空间中初始化主题的 Dirichlet 分布,并从主题上单词的多项式分布中为每个先前抽取的主题选择 N 个单词。
  3. 最大化创建相同文档的概率。
    上述算法的数学定义为

在这里插入图片描述

其中 α \alpha α β \beta β 定义了 Dirichlet 分布, θ \theta θ ϕ \phi ϕ 定义了多叉分布, Z Z Z 是包含所有文档中所有单词的主题向量, W W W 是包含所有文档中所有单词的向量, M M M 个文档数, K K K 个主题数和 N N N 个单词数。

我们可以使用吉布斯采样(Gibbs sampling)来完成整个训练或概率最大化的过程,其总体思路是让每个文档和每个单词尽可能地单色。基本上,这意味着我们希望每篇文档的文章数越少越好,每个词属于的主题数越少越好。

一致性得分 coherence score

在主题建模中,我们可以使用一致性得分来衡量主题对人类的可解释性。在这种情况下,主题表示为属于该特定主题概率最高的前 N 个词。简而言之,一致性得分衡量的是这些词之间的相似程度。

1. CV 一致性得分

最流行的一致性度量之一被称为 CV。它利用词的共现创建词的内容向量,然后利用归一化点式互信息(NPMI)和余弦相似度计算得分。这个指标很受欢迎,因为它是 Gensim 主题一致性pipeline模块的默认指标,但它也存在一些问题。即使是该指标的作者也不推荐使用它。

不推荐使用 CV 一致性度量。

2. UMass 一致性得分

我们建议使用 UMass 一致性评分来代替 CV 评分。它计算两个词 w i w_{i} wi w j w_{j} wj 在语料库中同时出现的频率,其定义为
在这里插入图片描述

其中, D ( w i , w j ) D(w_{i}, w_{j}) D(wi,wj) 表示单词 w i w_{i} wi w j w_{j} wj 在文档中同时出现的次数, D ( w i ) D(w_{i}) D(wi) 表示单词 w i w_{i} wi 单独出现的次数。数字越大,一致性得分越高。此外,这一指标并不对称,也就是说 C U M a s s ( w i , w j ) C_{UMass}(w_{i}, w_{j}) CUMass(wi,wj)不等于 C U M a s s ( w j , w i ) C_{UMass}(w_{j}, w_{i}) CUMass(wj,wi)。我们用描述主题的前 N 个词的平均成对一致性得分来计算主题的全局一致性。

3. UCI 一致性得分

该一致性得分基于滑动窗口和所有词对的点互信息,使用出现率最高的 N 个词。我们不计算两个词在文档中出现的频率,而是使用滑动窗口计算词的共现。也就是说,如果我们的滑动窗口大小为 10,那么对于一个特定的词 w i w_{i} wi,我们只能观察到词 w i w_{i} wi 前后的 10 个词。

因此,如果单词 w i w_{i} wi w j w_{j} wj 同时出现在文档中,但它们没有同时出现在一个滑动窗口中,我们就不认为它们是同时出现的。同样,对于 UMass 分数,我们将单词 w i w_{i} wi w j w_{j} wj 之间的 UCI 一致性定义为

在这里插入图片描述

其中, P ( w ) P(w) P(w) 是在滑动窗口中看到单词 w 的概率, P ( w i , w j ) P(w_{i}, w_{j}) P(wi,wj)是单词 w i w_{i} wi w j w_{j} wj 在滑动窗口中同时出现的概率。在原论文中,这些概率是使用 10 个单词的滑动窗口,从 200 多万篇英文维基百科文章的整个语料库中估算出来的。我们计算话题全局一致性的方法与计算 UMass 一致性的方法相同。

4. Word2vec 一致性得分

一个聪明的想法是利用 word2vec 模型来计算一致性得分。这将在我们的得分中引入单词的语义。基本上,我们希望根据两个标准来衡量一致性:

主题内相似性–同一主题中词语的相似性。
主题间相似性–不同主题中词语的相似性。
这个想法非常简单。我们希望主题内相似度最大化,主题间相似度最小化。此外,我们所说的相似性是指 word2vec 嵌入所代表的词与词之间的余弦相似性。

然后,我们计算每个主题的主题内相似度,即该主题中每对可能的前 N 个词之间的平均相似度。随后,我们计算两个主题之间的主题间相似度,即这两个主题中前 N 个词之间的平均相似度。

最后,两个主题 t i t_{i} ti t j t_{j} tj 之间的 word2vec 一致性得分计算公式为
在这里插入图片描述

5. 选择最佳一致性得分

**没有一种方法可以确定一致性得分的好坏。**得分及其价值取决于计算数据。例如,在一种情况下,0.5 的分数可能足够好,但在另一种情况下则不可接受。唯一的规则是,我们要最大限度地提高这个分数。

通常,一致性得分会随着主题数量的增加而增加。随着主题数量的增加,这种增加会变得越来越小。可以使用所谓的肘部技术来权衡主题数量和一致性得分。这种方法意味着将一致性得分绘制成主题数量的函数。我们利用曲线的肘部来选择主题数量。

这种方法背后的理念是,我们要选择一个点,在这个点之后,一致性得分的递减增长不再值得额外增加主题数。n_topics = 3 时的肘截点示例如下:
在这里插入图片描述

elbow rule
此外,一致性得分取决于 LDA 超参数,如 α \alpha α β \beta β K K K。毕竟,手动验证结果是很重要的,因为一般来说,无监督机器学习系统的验证工作都是由人工完成的。

这篇关于主题模型LDA教程:一致性得分coherence score方法对比(umass、c_v、uci)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390911

相关文章

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

MySQL底层文件的查看和修改方法

《MySQL底层文件的查看和修改方法》MySQL底层文件分为文本类(可安全查看/修改)和二进制类(禁止手动操作),以下按「查看方法、修改方法、风险管控三部分详细说明,所有操作均以Linux环境为例,需... 目录引言一、mysql 底层文件的查看方法1. 先定位核心文件路径(基础前提)2. 文本类文件(可直

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换