Python中Tensorflow无法调用GPU问题的解决方法

2025-06-24 17:50

本文主要是介绍Python中Tensorflow无法调用GPU问题的解决方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN...

当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到GPU。

import tensorflow as tf
# 查看gpu和cpu的数量
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
cpus = tf.config.experimental.list_physical_devices(device_type='CPU')

是由于tensorflow版本从2.x开始不再区分CPU版和GPU版,

官网中说明Tensorflow 2.10是最后一个在本地Windows上支持GPU的版本。

所以要在na编程tive-windows上使用GPU,就只能安装2.10.0版本及以下的版本,或者安装老版的tensorflow-gpu。

解决步骤:

所有现在我们要做的就是:要使用python2.10版本的Tensorflow去调用GPU

但是你如果想使用2.10版本的Tensorflow,你必须下载相应适配的CUDA

WIN+r 输入cmd 用Python -V查看你的python版本

Python -V
或
python --version

查出来:

Python中Tensorflow无法调用GPU问题的解决方法

接下来就是要把TensorFlow的版本降下来,在PyCharm里面的终端运行下面代码

pip install tensorflow==2.10.0

WIN+R并输入CMD打开命令提示符,输入nvidia-smi查看驱动支持的最高CUDA版本,以本人驱动为例,适用的最高CUDA版本为12.1

nvidia-smi

Python中Tensorflow无法调用GPU问题的解决方法

下一步是彻底删除旧的CUDA和cuDNN

先删除含CUDA的程序

在搜索栏输入控制面板---->打开控制面板

点击 程序和功能

卸载所有与CUDA有关的程序

Python中Tensorflow无法调用GPU问题的解决方法

检查删除环境变量

 打开 此电脑---->系统属性---->高级系统设置---->环境变量

找到环境变量和系统变量的path,点击编辑,若发现path中没有含CUDA的环境变量,证明刚刚第一步卸载CUDA的时候系统已经自动删除,若系统没有自动删除python(path中仍然含有C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0这样含有CUDA的路径),则需要手动删除。

Python中Tensorflow无法调用GPU问题的解决方法

检查删除文件夹

找到NVIDIA GPU Computing Toolkit文件夹,删除该文件夹即可,因为安装CUDA时默认的安装路径就是这个文件,又因为cuDNN是专门为深度学习设计的GPU加速库,通常是安装在CUDA的目录下的,所以把这个文件删了,也就把CUDA和cuDNN删除干净了!

Python中Tensorflow无法调用GPU问题的解决方法

完成以上三大步骤,CUDA和cuDNN就卸载完成啦!

接下来就是要重新安装合适版本的CUDA(CUDA11.2)下载地址

Python中Tensorflow无法调用GPU问题的解决方法

Python中Tensorflow无法调用GPU问题的解决方法

验证CUDA是否安装完成

在新打开的cmd窗android口中输入:

nvcc -V

Python中Tensorflow无法调用GPU问题的解决方法

同样下载匹配的cuDNN,这里选择8.9.7适用于CUDA 11.X的版本:链接地址 

Python中Tensorflow无法调用GPU问题的解决方法

解压出cuDNN文件后

复制以下三个文件夹

Python中Tensorflow无法调用GPU问题的解决方法

将文件夹粘贴至如下路径:

path to your cudaFolder/Files/NVIDIA GPU Computing Toolkit/CUDA/v11.6

Python中Tensorflow无法调用GPU问题的解决方法

验证cuDNN是否安装成功

①在下述文件夹右键,打开终端

path to your cudaFolder/Files/NVIDIA GPU Computing Toolkit/CUDA/v11.6/extras/demo_suite

②输入:

.\deviceQuery.exe

Python中Tensorflow无法调用GPU问题的解决方法

得到PASS即代表安装成功

输入:

 .\bandwidthTest.exe

Python中Tensorflow无法调用GPU问题的解决方法

得到PASS即代表安装成功

然后就是给CUDA配置环境变量

此电脑——属性——高级系统设置——环境变量——系统变量 ,在系统变量中找到path,去里面加另外两条,前两条应该本来就有,把后两条加上,最终有四条路径见截图

Python中Tensorflow无法调用GPU问题的解决方法

在python中pip安装tensorflow-cpu

pip install tensorflow-cpu==2.10

pip install tensorflow-cpu==2.10

如果曾经安装过,其他两种,可以先执行卸载。

    pip uninstall tensorflow
    pip uninstall tensorflow-gpu

安装plugin

pip install tensorflow-directml-plugin

如果此时出现

ERROR: Could not find a version that satisfies the requirement tensorflow-directml-plugin (from versions: none)
ERROR: No matching distribution found for tensorflow-directml-plugin

那一定是前面的环境没有配置好,重新弄吧。

弄好后重启电脑

安装下面的俩个

conda install cudatoolkit=11.1
conda install "tensorflow<2.11"

然后在python运行以下代码:

import tensorflow as tf

# 检查 TensorFlow 是否看到 GPU
print("TensorFlow version:", tf.__version__)
print("Num GPUs Available: ", len(tf.config.list_physical_devpythonices('GPU')))

# 打印出可用 GPU 的详细信息
if tf.config.list_physical_devices('GPU'):
    for gpu in tf.config.list_physical_devices('GPU'):
        print("Name:", gpu.name, "  Type:", gpu.device_type)

得到

Python中Tensorflow无法调用GPU问题的解决方法

以上就是Python中Tensorflow无法调用GPU问题的解决方法的详细内容,更多关于Python Tensorflow无法调用GPU的资料请关注China编程(www.chinasem.cn)其它相关文章!

这篇关于Python中Tensorflow无法调用GPU问题的解决方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155192

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注