鸢尾花和月亮数据集,运用线性LDA、k-means和SVM算法进行二分类可视化分析

本文主要是介绍鸢尾花和月亮数据集,运用线性LDA、k-means和SVM算法进行二分类可视化分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、线性LDA
    • 1.鸢尾花LDA
    • 2.月亮集LDA
  • 二、K-means
    • 1.鸢尾花k-means
    • 2.月亮集k-means
  • 三、SVM
    • 1.鸢尾花svm
    • 2.月亮集svm
  • 四、SVM的优缺点
    • 优点
    • 缺点
  • 五、参考文章

一、线性LDA

1.鸢尾花LDA

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsdef LDA(X, y):#根据y等于0或1分类X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])len1 = len(X1)len2 = len(X2) mju1 = np.mean(X1, axis=0)#求中心点mju2 = np.mean(X2, axis=0)cov1 = np.dot((X1 - mju1).T, (X1 - mju1))cov2=np.dot((X2 - mju2).T, (X2 - mju2))Sw = cov1 + cov2a=mju1-mju2a=(np.array([a])).Tw=(np.dot(np.linalg.inv(Sw),a))X1_new =func(X1, w)X2_new = func(X2, w)y1_new = [1 for i in range(len1)]y2_new = [2 for i in range(len2)]return X1_new,X2_new,y1_new,y2_new
def func(x, w):return np.dot((x), w)iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # 花瓣长度与花瓣宽度  petal length, petal width
y = iris["target"]
#print(y)
setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]
#print(Sw)
x1_new, X2_new, y1_new, y2_new = LDA(X, y)
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.title("Iris_LDA")
plt.show()

在这里插入图片描述

2.月亮集LDA

def LDA(X, y):#根据y等于0或1分类X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])len1 = len(X1)len2 = len(X2) mju1 = np.mean(X1, axis=0)#求中心点mju2 = np.mean(X2, axis=0)cov1 = np.dot((X1 - mju1).T, (X1 - mju1))cov2=np.dot((X2 - mju2).T, (X2 - mju2))Sw = cov1 + cov2a=mju1-mju2a=(np.array([a])).Tw=(np.dot(np.linalg.inv(Sw),a))X1_new =func(X1, w)X2_new = func(X2, w)y1_new = [1 for i in range(len1)]y2_new = [2 for i in range(len2)]
def func(x, w):return np.dot((x), w)
X, y = datasets.make_moons(n_samples=100, noise=0.15, random_state=42)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.title("moon_LDA")
plt.show()

在这里插入图片描述

二、K-means

1.鸢尾花k-means

from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans#加载数据集,是一个字典类似Java中的map
lris_df = datasets.load_iris()#挑选出前两个维度作为x轴和y轴,你也可以选择其他维度
x_axis = lris_df.data[:,0]
y_axis = lris_df.data[:,2]model = KMeans(n_clusters=2)#训练模型
model.fit(lris_df.data)#选取行标为100的那条数据,进行预测
prddicted_label= model.predict([[6.3, 3.3, 6, 2.5]])#预测全部150条数据
all_predictions = model.predict(lris_df.data)#打印出来对150条数据的聚类散点图
plt.scatter(x_axis, y_axis, c=all_predictions)
plt.title("Iris_KMeans")  
plt.show()

在这里插入图片描述

2.月亮集k-means

#基于k-means算法对月亮数据集进行分类
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
import numpy as np
X,y=make_moons(n_samples=100,shuffle=True,noise=0.15,random_state=42)
clf = KMeans(n_clusters=2)
clf.fit(X,y)
predicted = clf.predict(X)   
plt.scatter(X[:,0], X[:,1], c=predicted, marker='s',s=100,cmap=plt.cm.Paired)    
plt.title("Moon_KMeans")    
plt.show() 

在这里插入图片描述

三、SVM

1.鸢尾花svm

from sklearn.svm import SVC
from sklearn import datasetsiris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]# SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)

在这里插入图片描述

def plot_svc_decision_boundary(svm_clf, xmin, xmax):# 获取决策边界的w和bw = svm_clf.coef_[0]b = svm_clf.intercept_[0]# At the decision boundary, w0*x0 + w1*x1 + b = 0# => x1 = -w0/w1 * x0 - b/w1x0 = np.linspace(xmin, xmax, 200)# 画中间的粗线decision_boundary = -w[0]/w[1] * x0 - b/w[1]# 计算间隔margin = 1/w[1]gutter_up = decision_boundary + margingutter_down = decision_boundary - margin# 获取支持向量svs = svm_clf.support_vectors_plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')plt.plot(x0, decision_boundary, "k-", linewidth=2)plt.plot(x0, gutter_up, "k--", linewidth=2)plt.plot(x0, gutter_down, "k--", linewidth=2)
# Bad models
x0 = np.linspace(0, 5.5, 200)plt.figure(figsize=(12,2.7))plt.axis([0, 5.5, 0, 2])plt.subplot(122)
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])
plt.title("Iris_svm")
plt.show()

在这里插入图片描述

2.月亮集svm

from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
polynomial_svm_clf = Pipeline([# 将源数据 映射到 3阶多项式("poly_features", PolynomialFeatures(degree=3)),# 标准化("scaler", StandardScaler()),# SVC线性分类器("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))])
polynomial_svm_clf.fit(X, y)
def plot_dataset(X, y, axes):plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")plt.axis(axes)plt.grid(True, which='both')
def plot_predictions(clf, axes):# 打表x0s = np.linspace(axes[0], axes[1], 100)x1s = np.linspace(axes[2], axes[3], 100)x0, x1 = np.meshgrid(x0s, x1s)X = np.c_[x0.ravel(), x1.ravel()]y_pred = clf.predict(X).reshape(x0.shape)y_decision = clf.decision_function(X).reshape(x0.shape)
#     print(y_pred)
#     print(y_decision)plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.title("moon_svm")
plt.show()

在这里插入图片描述

四、SVM的优缺点

优点

1、使用核函数可以向高维空间进行映射

2、使用核函数可以解决非线性的分类

3、分类思想很简单,就是将样本与决策面的间隔最大化

4、分类效果较好

缺点

1、对大规模数据训练比较困难

2、无法直接支持多分类,但是可以使用间接的方法来做

五、参考文章

https://blog.csdn.net/qq_45213986/article/details/106186415?fps=1&locationNum=2?ops_request_misc=&request_id=&biz_id=102&utm_term=python%E5%AE%9E%E7%8E%B0%E9%B8%A2%E5%B0%BE%E8%8A%B1LDA&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-106186415

https://blog.csdn.net/zrh_CSDN/article/details/80934248

这篇关于鸢尾花和月亮数据集,运用线性LDA、k-means和SVM算法进行二分类可视化分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888961

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda