实战07- 模型融合:利用AdaBoost元算法提高分类性能

2024-06-04 20:32

本文主要是介绍实战07- 模型融合:利用AdaBoost元算法提高分类性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

元算法(meta-algorithm)是对其他算法进行组合的一种方式,即模型融合。

模型融合主要分为三种:BaggingBoosting和Stacking。
思想:将弱分类器融合成强分类器,融合后比最强的弱分类器更好。
视频导学:https://www.bilibili.com/video/BV1y4411g7ia?p=8
参考:

  • https://www.cnblogs.com/hithink/p/6424508.html
    https://www.cnblogs.com/rongyux/p/5621854.html
    注释https://www.cnblogs.com/zy230530/p/6909288.html

单层决策树(decision stump)分类器 -> 运用Adaboost -》 处理非均衡分类问题。

7.1 基于数据集多重抽样的分类器

多种分类器的组合成为集成方法(ensemble method)或者元算法(meta-algorithm)。集成方式包括:不同算法集成、同一算法不同设置的集成、数据集不同部分分配给不同的分类器的集成。

bagging:基于数据随机重抽样的分类器构建方法
· 自举汇聚法(bootstrap aggregating),也称为bagging方法。
· 各分类器权重相同
· 并行预测
· 有放回抽取得到S个数据集
· 代表方法:随机森林(random forest)

boosting: 关注被已有分类器错分的数据来获得新的分类器。
· 基于所有分类器 结果的加权求和
· 各分类器权重不相同
· 串行顺序预测
· 同一数据集
· 分类器的权重对应于上一轮迭代中的成功度
· 代表方法:AdaBoost, GBDT, XGBoost.

7.2 训练算法:基于错误提升分类器的性能

AdaBoost为例

即 adaptive boosting,自适应boosting。
训练数据中的每个样本,赋予了一个权重,这些权重构成了向量 D D D;
为了从所有弱分类器中得到最终的分类结果,AdaBoost为每个分类器分配了一个权重值 α \alpha α, 这些 α \alpha α值基于每个弱分类器的错误率。

  1. 在每一轮如何改变训练数据的权值或者概率分布?
    提高错分样本的权值,减少分对样本的权值。( D D D)

  2. 通过什么方式组合弱分类器?
    通过加法模型将弱分类器进行线性组合,比如adaboost通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器权值。( α \alpha α)
    分类正确的样本,权重更改为: D i t + 1 = D i ( t ) e − α S u m ( D ) D_i^{t+1} = \frac{D_i^{(t)} e^{-\alpha}}{Sum(D)} Dit+1=Sum(D)Di(t)eα
    分类错误的样本,权重更改为: D i t + 1 = D i ( t ) e α S u m ( D ) D_i^{t+1} = \frac{D_i^{(t)} e^{\alpha}}{Sum(D)} Dit+1=Sum(D)Di(t)eα
    可统一为: D i t + 1 = D i ( t ) e − α y t h t S u m ( D ) D_i^{t+1} = \frac{D_i^{(t)} e^{-\alpha y_t h_t}}{Sum(D)} Dit+1=Sum(D)Di(t)eαytht, 预测结果 h t h_t ht是 +1 或 -1。

7.3 基于单层决策树构建弱分类器

单层决策树(decision stump,也称为决策树桩),仅基于单个特征来做决策,属于base algorithm。
三层循环:

  1. 针对每个特征,如x轴特征,y轴特征,每一列都是一种特征。
  2. 针对每个阈值 (步长),(rangeMax - rangeMin)/ numSteps
  3. 针对阈值下的每种情况,即不等式’lt’或者’gt’.

数组过滤: 通过比较predictedVals == labelMat两者是否相等,来赋0值。这里是想把预测错误的位置置为1, 正确置为0。 如此一来, 在后续统计总的error的时候可以直接用weightedError =D.T* errArr 或者更后面用matrix.sum()。最终得到字典、错误率、类别估计值。

7.4 完整AdaBoost算法的实现

基于单层决策树的训练过程,见P122.

numIt 指定迭代次数,这里相当于想要得到多少个相同类型的弱分类器。
m个样本,初始化每个样本的权重为 1/m
np.multiply(x,y)是对应位置相乘,这里 shape(x) == shape(y)
sign() 是符号函数。
观察输出可以看到,在D中,错误的样本权重会增大。

7.5 测试算法:基于AdaBoost的分类

输出类别的估计值乘上该单层决策树的 α \alpha α权重然后累加到aggClassEst上,作为最终结果。

7.6 示例:在一个难数据集上应用AdaBoost

检查数据, 确保标签是+1和-1
数据集默认最后一列是类别标签
是否过拟合?

7.7 非均衡分类问题

混淆矩阵(confusion matrix),不同类别的分类代价并不相等。
错误率: 指在所有测试样例中错分的样例比例。
正确率、召回率
ROC曲线与AUC
基于matplotlib绘图<1.0, 1.0>到<0, 0>

准确率accuracy 和 精确率 precision的区别
在这里插入图片描述

  1. 基于代价函数的分类器决策控制
  2. 欠抽样和过抽样——两种处理非均衡问题的数据抽样方法
    过采样的方法,如SOMTE和ADASYN算法,通常比欠采样效果好。

分类结果是标称值,回归结果是连续值。

下一篇: 利用回归预测数值型数据。

这篇关于实战07- 模型融合:利用AdaBoost元算法提高分类性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031048

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢