面试算法题:二叉树的平衡性检测

2024-04-30 22:32

本文主要是介绍面试算法题:二叉树的平衡性检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更详细的讲解和代码调试演示过程,请参看视频
如何进入google,算法面试技能全面提升指南

如果你对机器学习感兴趣,请参看一下链接:
机器学习:神经网络导论

二叉树由于其结构化清晰,并且变种多样,是面试中极为常见的考题。从本节开始,我们进入到有关二叉树面试题的研究中。

二叉树自身存在着一种递归结构,一个节点除了含有值外,还含有两个节点指针,这两个指针又分别指向两颗二叉树。二叉树有一个很重要的概念叫做树的高,它指的的是从某个节点开始,抵达某个叶子节点的最长路径。例如给定下面的二叉树:

这里写图片描述

如果从根节点6算起,二叉树的高度为4,因为它有4个层级,那么6的左子树,它的高度就为3,以此类推。

如果一颗二叉树是平衡的,必须满足每个节点,它左子树和右子树高度只差不超过1. 问题是,给定一颗二叉树的根节点,给出算法,判断该二叉树是否是一颗平衡二叉树。

如果一棵二叉树是空的,那么我们认为它的高度为0.
对于任意叶子节点,有就是节点的左右子树为空,那么它的高度为1.
对于非叶子节点,它的高度是先计算它的左右子树的高度,那么它本身的高度就是左右子树的最大高度加1.

由此,这道题的解决思路是计算每个节点左右子树的高度,如果两者高度只差大于1,那么它不是平衡的,如果每个节点左右子树的高度只差不超过1,那么他就是一棵平衡二叉树。

二叉树的高度可以递归来计算:
1. 如果输入的是空节点,那么返回高度值0
2. 如果输入的是叶子节点,那么返回高度1
3. 如果输入的是非叶子节点,那么分别计算左右子树的高度,选取其中最大者加1作为本节点的高度。

根据上面思路,我们实现的算法如下:


public class BalancedTree {private boolean balanced = true;public boolean isTreeBalanced(TreeNode node) {computeTreeHeight(node);return balanced;}private int computeTreeHeight(TreeNode node) {if (node == null) {return 0;}int leftHeight = computeTreeHeight(node.left);int rightHeight = computeTreeHeight(node.right);int height = leftHeight > rightHeight ? leftHeight : rightHeight;if (Math.abs(rightHeight - leftHeight) > 1) {balanced = false;}return height + 1;}
}

computeTreeHeight 接收的参数是一个二叉树的节点,然后分别计算该节点的左右子树高度,然后根据结果计算自身高度,在计算过程中,如果发现左右子树高度超过1,那么把balanced 设置成false, 如果该值设置成false的话,那么该二叉树就不是平衡的。

我们看看二叉树节点的定义和构造:


public class TreeNode {public int vaule;public TreeNode left;public TreeNode right;public TreeNode(int v) {this.vaule = v;this.left = this.right = null;}
}public class TreeUtil {private TreeNode root = null;public void addTreeNode(TreeNode node) {if (root == null) {root = node;return;}TreeNode cur = root, prev = root;while (cur != null) {prev = cur;if (cur.vaule > node.vaule) {cur = cur.left;} else {cur = cur.right;}}if (prev.vaule > node.vaule) {prev.left = node;} else {prev.right = node;}}public TreeNode getTreeRoot() {return root;}
}

TreeUtil用来构建一棵二叉树,它构建的是一棵排序二叉树,如果加入的节点比当前节点值小,那么把节点加入当前节点的左子树,如果加入节点的值比当前节点值大,那么把节点加入当前节点的右子树。我们再看看主函数入口处代码:

public class BinaryTree {public static void main(String[] s) {int[] arr = new int[]{6,4,9,2,5,7,10,1,3,8};TreeUtil util = new TreeUtil();for (int i = 0; i < arr.length; i++) {TreeNode n = new TreeNode(arr[i]);util.addTreeNode(n);}TreeNode root = util.getTreeRoot();BalancedTree bt = new BalancedTree();boolean isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);
public class BinaryTree {public static void main(String[] s) {int[] arr = new int[]{6,4,9,2,5,7,10,1,3,8};TreeUtil util = new TreeUtil();for (int i = 0; i < arr.length; i++) {TreeNode n = new TreeNode(arr[i]);util.addTreeNode(n);}TreeNode root = util.getTreeRoot();BalancedTree bt = new BalancedTree();boolean isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);util.addTreeNode(new TreeNode(11));util.addTreeNode(new TreeNode(12));util.addTreeNode(new TreeNode(13));root = util.getTreeRoot();isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);}
}}
}

开始的for 循环利用TreeUtil构建了前面图像所示的二叉树,然后获得该二叉树的根节点,然后使用BalancedTree来检验该二叉树是否平衡,通过观察我们知道,该二叉树每个节点的左右子树高度不超过1,所以该二叉树是平衡的。

接下来,我们又给二叉树加入三个节点,节点值分别为11,12,13,于是二叉树如图所示:
这里写图片描述

此时我们可以看到,节点10的左子树是空,因此左子树的高度是0,右子树的高度是3,左右子树的高度相差超过了1,所以此时该二叉树是不平衡的。如果运行代码,可以发现,我们的代码能给出去正确的判断,因此代码对算法的实现是正确的。

该算法主要是递归的去计算每个节点的高度,在计算过程中,每个节点最多被访问1次,因此算法的复杂度是O(n),算法没有申请新内存因此算法的空间复杂度是O(1).

更详细的解释和代码演示,请参看视频。
更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于面试算法题:二叉树的平衡性检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950083

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n