openCV中KNN算法的实现

2025-04-14 16:50
文章标签 算法 实现 opencv knn

本文主要是介绍openCV中KNN算法的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的...

OpenCV 是一个开源的跨平台计算机视觉库,它提供了各种用于图像处理、计算机视觉任务的算法和工具,涵盖图像滤波、特征提取、目标检测、图像分割、视频分析等众多领域,广泛应用于计算机视觉相关的科研和工业项目中,可帮助开发者快速实现各种视觉处理功能。

KNN(K-最近邻)算法是一种简单且常用的分类算法。其核心思想是:如果一个样本在特征空间中的K个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别

KNN算法流程

  • 计算距离:使用向量之间的距离来衡量样本之间的相似度。常见的距离计算公式有欧式距离、曼哈顿距离等。

  • 升序排序:根据计算好的距离进行升序排序。

  • 取前K样本:选取距离最近的前K个样本。

  • 加权平均:根据距离对样本进行加权计算,距离越近,权重越高。

使用OpenCV实现KNN

以下是一张2000X1000像素的图片,包含5000个数字,我JcOOjOcvE们将左边2500个数划分训练集,右边2500个数划分为测试集,构建模型训练结果

openCV中KNN算法的实现

首先对图像进行切割并划分训练集和测JcOOjOcvE试集

import numpy as np
import cv2

img=cv2.imread('digits.png')#读取名为 digits.png 的图像文件。
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#将图像转换为灰度图

cells=[np.hsjsplit(row,100) for row in np.vsplit(gray,50)]#将图像垂直分割50行,水平分割100列
x=np.array(cells)
train=x[:,:50]#划分训练集
test=x[:,50:100]#划分测试集

#将数据展平并转换为浮点型
​train_new=train.reshape(-1,400).astype(np.float32)
test_new=test.reshape(-1,400).astype(np.float32)

创建标签并对模型进行训练

k=np.arange(10)#生成一个数组 [0, 1, 2, ..., 9]
labels=np.repeat(k,250)#将每个数字重复250次,生成标签数组,形状为 (2500,)
train_labels=labels[:,np.newaxis]#将标签数组转换为列向量,形状为 (2500, 1)
test_labels=np.repeat(k,250)[:,np.newaxis]

knn=cv2.ml.KNearest_create()#创建KNN模型
knn.train(train_new,cv2.ml.ROW_SAMPLE,train_labels)#使用训练数据和标签训练模型

测试模型,计算准确率

ret,result,neighbours,dist=knnandroid.findNearejsst(test_new,k=3)#对测试数据进行预测,k=3 表示使用3个最近邻居。ret:是否成功执行。result:预测结果。neighbours:最近的邻居。dist:与邻居的距离。
print(ret,result,neighbours,dist)

#计算准确率
matches=result==test_labels
correct=np.count_nonzero(matches)
accuracy=correct*100.0/result.size
print("当前使用KNN识别手写数字的准确率为{}%。".format(accuracy))

最终代码输出得到以下结果

openCV中KNN算法的实现

到此这篇关于openCV中KNN算法的实现的文章就介绍到这了,更多相关openCV KNN 内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于openCV中KNN算法的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154219

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec