openCV中KNN算法的实现

2025-04-14 16:50
文章标签 算法 实现 opencv knn

本文主要是介绍openCV中KNN算法的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的...

OpenCV 是一个开源的跨平台计算机视觉库,它提供了各种用于图像处理、计算机视觉任务的算法和工具,涵盖图像滤波、特征提取、目标检测、图像分割、视频分析等众多领域,广泛应用于计算机视觉相关的科研和工业项目中,可帮助开发者快速实现各种视觉处理功能。

KNN(K-最近邻)算法是一种简单且常用的分类算法。其核心思想是:如果一个样本在特征空间中的K个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别

KNN算法流程

  • 计算距离:使用向量之间的距离来衡量样本之间的相似度。常见的距离计算公式有欧式距离、曼哈顿距离等。

  • 升序排序:根据计算好的距离进行升序排序。

  • 取前K样本:选取距离最近的前K个样本。

  • 加权平均:根据距离对样本进行加权计算,距离越近,权重越高。

使用OpenCV实现KNN

以下是一张2000X1000像素的图片,包含5000个数字,我JcOOjOcvE们将左边2500个数划分训练集,右边2500个数划分为测试集,构建模型训练结果

openCV中KNN算法的实现

首先对图像进行切割并划分训练集和测JcOOjOcvE试集

import numpy as np
import cv2

img=cv2.imread('digits.png')#读取名为 digits.png 的图像文件。
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#将图像转换为灰度图

cells=[np.hsjsplit(row,100) for row in np.vsplit(gray,50)]#将图像垂直分割50行,水平分割100列
x=np.array(cells)
train=x[:,:50]#划分训练集
test=x[:,50:100]#划分测试集

#将数据展平并转换为浮点型
​train_new=train.reshape(-1,400).astype(np.float32)
test_new=test.reshape(-1,400).astype(np.float32)

创建标签并对模型进行训练

k=np.arange(10)#生成一个数组 [0, 1, 2, ..., 9]
labels=np.repeat(k,250)#将每个数字重复250次,生成标签数组,形状为 (2500,)
train_labels=labels[:,np.newaxis]#将标签数组转换为列向量,形状为 (2500, 1)
test_labels=np.repeat(k,250)[:,np.newaxis]

knn=cv2.ml.KNearest_create()#创建KNN模型
knn.train(train_new,cv2.ml.ROW_SAMPLE,train_labels)#使用训练数据和标签训练模型

测试模型,计算准确率

ret,result,neighbours,dist=knnandroid.findNearejsst(test_new,k=3)#对测试数据进行预测,k=3 表示使用3个最近邻居。ret:是否成功执行。result:预测结果。neighbours:最近的邻居。dist:与邻居的距离。
print(ret,result,neighbours,dist)

#计算准确率
matches=result==test_labels
correct=np.count_nonzero(matches)
accuracy=correct*100.0/result.size
print("当前使用KNN识别手写数字的准确率为{}%。".format(accuracy))

最终代码输出得到以下结果

openCV中KNN算法的实现

到此这篇关于openCV中KNN算法的实现的文章就介绍到这了,更多相关openCV KNN 内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于openCV中KNN算法的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154219

相关文章

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service