OpenCV实现实时颜色检测的示例

2025-06-15 16:50

本文主要是介绍OpenCV实现实时颜色检测的示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考...

一、引言

今天我将介绍一个使用python和OpenCV库实现的实时颜色识别系统。这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红、黄、绿、蓝)。这种技术在机器China编程人视觉、自动化检测和交互式应用中有着广泛的应用前景。

二、系统概述

该系统主要包含以下几个功能:

  • 实时视频捕捉
  • 在视频帧中划定特定检测区域
  • 将检测区域转换为HSV色彩空间
  • 分析区域内的色调(H)值
  • 根据H值范围判断颜色类型
  • 实时显示结果

三、代码解析

1. 导入库

import cv2

我们只需要导入OpenCV库,它提供了强大的计算机视觉功能,包括图像处理和视频捕捉。

2. 颜色识别函数

def get_color(img):
    H = []
    color_name = None
    img = cv2.resize(img,(640,400),)
    # 将彩色图转换为HSV
    HSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    # 画矩形框
    cv2.rectangle(img,(280,180),(360,260),(0,255,0),2)
    # 依次取出每行每列的H,S,V值放入容器中
    for i in range(280,360):
        for j in range(180,260): H.append(HSV[j,i][0])
    # 分别计算出H,S,V的最大最小
    H_min = min(H);H_ma编程x = max(H)
    # 判断颜色
    if H_min >= 0 and H_max <= 10 or H_min >= 156 and H_max <= 180: color_name='red'
    elif  H_min >= 26 and H_max <= 34 : color_name='yellow'
    elif  H_min >= 35 and H_max <= 77 : color_name='green'
    elif  H_min >= 100 and H_max <= 124 编程China编程: color_name='blue'
    print(color_name)
    return  img,color_name

函数功能详解

  • 图像预处理

    • 首先将输入图像调整为固定尺寸(640×400),确保处理一致性
  • 色彩空间转换

    • 将BGR格式转换为HSV格式,HSV色彩空间更适合颜色识别
    • H(色调):表示颜色类型
    • S(饱和度):表示颜色的纯度
    • V(亮度):表示颜色的明暗程度
  • 检测区域标记

    • 在图像上绘制一个绿色矩形框(280,180)到(360,260),标识检测区域
  • 数据采集

    • 遍历检测区域内每个像素点,收集所有H值
  • 颜色判断

    • 计算区域内H值的最小和最大值
    • 根据H值范围判断颜色:
      • 红色:0-10或156-180
      • 黄色:26-34
      • 绿色:35-77
      • 蓝色:100-124

3. 主程序循环

cap = cv2.VideoCapture(0)
while 1:
    _,frame=cap.read()
    img,cal = get_color(frame)
    cv2.imshow('',img)
    if cv2.waitKey(1) == 27:
        break
  • 视频捕捉初始化

    • 创建VideoCapture对象,参数0表示使用默认摄像头
  • 主循环

    • 不断读取视频帧
    • 调用get_color函数处理每一帧
    • 显示处理后的图像
    • 按ESC键(ASCII 27)退出程序

四、HSV色彩空间详解

为什么选择HSV而不是RGB进行颜色识别?

  • RGB的局限性

    • RGB三个通道都与亮度相关
    • 对光照变化敏感
    • 颜色判断需要同时考虑三个通道
  • HSV的优势

    • 将颜色信息(H)与亮度(V)、饱和度(S)分离
    • 对光照变化有一定鲁棒性
    • 颜色判断主要依据H通道

五、颜色范围设定

OpenCV中HSV的范围:

  • H: 0-180 (通常色彩空间为0-360,但OpenCV使用8位存储,所以除以2)
  • S: 0-255
  • V: 0-255

常见颜色H值范围:

  • 红色:0-10和170-180
  • 橙色:11-25
  • 黄色:26-34
  • 绿色:35-77
  • 蓝色:100-124
  • 紫色:125-155

可对比如下的颜色范围图

OpenCV实现实时颜色检测的示例

六、系统优化建议

  • 增加饱和度(S)和亮度(V)的过滤

    • 可以排除低饱和度(接近灰色)或低亮度(接近黑色)的区域
  • 使用均值而非极值

    • 当前使用min/max容易受噪声影响,可改为计算平均值
  • 扩大检测区域

    • 当前区域较小(80×80像素),可以适当扩大
  • 添加更多颜色识别

    • 如橙色、紫色等
  • 优化性能

    • 当前双重循环效率不高,可以使用NumPy进行向量化操作

七、完整代码

import cv2

def get_color(img):
    H = []
    color_name = None
    img = cv2.res编程ize(img,(640,400),)
    # 将彩色图转换为HSV
    HSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    # 画矩形框
    cv2.rectangle(img,(280,180),(360,260),(0,255,0),2)
    # 依次取出每行每列的H,S,V值放入容器中
    for i in range(280,360):
        for j in range(180,260): H.append(HSV[j,i][0])
    # 分别计算出H,S,V的最大最小
    H_min = min(H);H_max = max(H)
    # 判断颜色
    if H_min >= 0 and H_max <= 10 or H_min >= 156 and H_max <= 180: color_name='red'
    elif  H_min >= 26 and H_max <= 34 : color_name='yellow'
    elif  H_min >= 35 anChina编程d H_max <= 77 : color_name='green'
    elif  H_min >= 100 and H_max <= 124 : color_name='blue'
    print(color_name)
    return  img,color_name

cap = cv2.VideoCapture(0)
while 1:
    _,frame=cap.read()
    img,cal = get_color(frame)
    cv2.imshow('',img)
    if cv2.waitKey(1) == 27:
        break

八、总结

本文介绍了一个基于OpenCV的实时颜色识别系统,通过HSV色彩空间转换和色调范围判断实现了基本颜色识别功能。该系统可以作为更复杂计算机视觉项目的基础,通过进一步优化和扩展,能够满足各种实际应用需求。

到此这篇关于OpenCV实现实时颜色检测的示例的文章就介绍到这了,更多相关OpenCV 实时颜色检测内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于OpenCV实现实时颜色检测的示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155065

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结