未来数据科学家必备的【核心算法】与【常用模型】

2024-04-28 13:38

本文主要是介绍未来数据科学家必备的【核心算法】与【常用模型】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

未来数据科学家必备的
核心算法与常用模型




机器学习和统计学是数据科学的两个主要理论基础。本文为您盘点数据科学家必备的核心机器学习算法和常用统计模型。


640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1


1Machine Learning 核心算法

1)回归/分类树

2)降维(PCA、MDS、tSNE等)

3)经典的前馈神经网络

4)Bagging ensembles方法(随机森林、KN N回归集成)

5)Boostingensembles方法(梯度提升、XGBoost算法)

6)参数调整或设计方案的优化算法(遗传算法,量子启发式演化算法,模拟退火/simulated annealing,粒子群优化/ particle-swarm optimization)

7)拓扑数据分析工具,特别适用于小样本量的无监督学习(持续同调/persistent homology,Morse-Smale聚类,Mapper ...)

8)深度学习架构(通用深度学习架构)

9)用于局部建模的KNN方法(回归,分类)

10)基于梯度的优化方法/Gradient-based optimization methods

11)网络度量/Network metrics和算法(中心度量,跳数,多样性,熵,拉普拉斯算子,疫情传播/epidemic spread,谱聚类/spectral clustering)

12)深层架构中的卷积和池化层/pooling layers(特别适用于计算机视觉和图像分类模型)

13)分层聚类(与k均值聚类和拓扑数据分析工具相关)

14)贝叶斯网络(路径挖掘/pathway mining)

15)复杂性和动态系统(与微分方程有关)

此外,部分领域还可能需要与自然语言处理、计算机视觉相关算法。


640?wx_fmt=jpeg


2  Statistical Models 常用模型

1)广义线性模型(是多数监督机器学习方法的基础,如逻辑回归和Tweedie回归)

2)时间序列方法(ARIMA,SSA,基于机器学习的方法)

3)结构方程建模(针对潜变量之间关系进行建模)

4)因子分析(调查设计和验证的探索型分析)

5)功效分析/试验设计(特别是基于仿真的试验设计,以避免分析过度)

6)非参数检验(MCMC)

7)K均值聚类

8)贝叶斯方法(朴素贝叶斯,贝叶斯模型平均/Bayesian model averaging,贝叶斯适应性试验/Bayesian adaptive trials等)

9)惩罚性回归模型(弹性网络/Elastic Net,LASSO,LARS ...)以及对通用模型(SVM,XGBoost ...)加罚分,这对于预测变量多于观测值的数据集很有用,在基因组学和社会科学研究中较为常用)

10)样条模型/Spline-based models(MARS等):主要用于流程建模

11)马尔可夫链和随机过程(时间序列建模和预测建模的替代方法)

12)缺失数据插补方法及其假设(missForest,MICE ...)

13)生存分析/Survival analysis(主要特点是考虑了每个观测出现某一结局的时间长短)

14)混合建模/Mixture modeling

15)统计推断和组群测试(A/B测试以及用于营销活动的更复杂的方法)


备  注 :1.本文原作者:Colleen M. Farrelly,源文URL: https://www.kdnuggets.com/2018/04/ key-algorithms-statistical-models-aspiring-data-scientists.html

2.由朝乐门负责翻译与编辑。本文已获 数据科学DataScience 授权转发!

END

如果你对人工智能与机器学习感兴趣,请加交流群:群号:139482724 ;

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


关联阅读:

原创系列文章:

1:从0开始搭建自己的数据运营指标体系(概括篇)

2 :从0开始搭建自己的数据运营指标体系(定位篇)

3 :从0开始搭建自己的数据运营体系(业务理解篇)

4 :数据指标的构建流程与逻辑

5 :系列 :从数据指标到数据运营指标体系

6:   实战 :为自己的公号搭建一个数据运营指标体系

7:  从0开始搭建自己的数据运营指标体系(运营活动分析)

数据运营 关联文章阅读:  

运营入门,从0到1搭建数据分析知识体系    

推荐 :数据分析师与运营协作的9个好习惯

干货 :手把手教你搭建数据化用户运营体系

推荐 :最用心的运营数据指标解读

干货 : 如何构建数据运营指标体系

从零开始,构建数据化运营体系

干货 :解读产品、运营和数据三个基友关系

干货 :从0到1搭建数据运营体系

数据分析、数据产品 关联文章阅读:

干货 :数据分析团队的搭建和思考

关于用户画像那些事,看这一文章就够了

数据分析师必需具备的10种分析思维。

如何构建大数据层级体系,看这一文章就够了

干货 : 聚焦于用户行为分析的数据产品

如何构建大数据层级体系,看这一文章就够了

80%的运营注定了打杂?因为你没有搭建出一套有效的用户运营体系

从底层到应用,那些数据人的必备技能

读懂用户运营体系:用户分层和分群

做运营必须掌握的数据分析思维,你还敢说不会做数据分析

这篇关于未来数据科学家必备的【核心算法】与【常用模型】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943397

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速