Qualcomm AI Hub-示例(二)模型性能分析

2024-03-22 02:28

本文主要是介绍Qualcomm AI Hub-示例(二)模型性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章介绍

模型性能分析(Profiling)

当模型尝试部署到设备时,会面临许多重要问题:

  • 目标硬件的推理延迟是多少?
  • 该模型是否符合一定的内存预算?
  • 模型能够利用神经处理单元吗?

通过在云端的物理设备运行模型完成性能分析,能够解答这些疑问。

编译模型

Qualcomm AI Hub支持分析已编译好的模型。在本例中,我们优化并评测了先前使用submit_compile_job()编译的模型。请注意,我们是如何利用compile_job使用get_target_model()的方法编译的模型。

import qai_hub as hub

# Profile the previously compiled model

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23"),

)

assert isinstance(profile_job, hub.ProfileJob)

返回值是ProfileJob的一个实例。要查看所有任务的列表,请转到/jobs/。

分析PyTorch模型性能

此示例需要PyTorch,可以按如下方式进行安装。

pip3 install "qai-hub[torch]"

在本例中,我们使用Qualcomm AI Hub优化和评测PyTorch模型。

from typing import List, Tuple

import torch

import qai_hub as hub

class SimpleNet(torch.nn.Module):

    def __init__(self):

        super().__init__()

        self.linear = torch.nn.Linear(5, 2)

    def forward(self, x):

        return self.linear(x)

input_shapes: List[Tuple[int, ...]] = [(3, 5)]

torch_model = SimpleNet()

# Trace the model using random inputs

torch_inputs = tuple(torch.randn(shape) for shape in input_shapes)

pt_model = torch.jit.trace(torch_model, torch_inputs)

# Submit compile job

compile_job = hub.submit_compile_job(

    model=pt_model,

    device=hub.Device("Samsung Galaxy S23 Ultra"),

    input_specs=dict(x=input_shapes[0]),

)

assert isinstance(compile_job, hub.CompileJob)

# Submit profile job using results form compile job

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

assert isinstance(profile_job, hub.ProfileJob)

有关上传、编译和提交任务时选项的更多信息,请参考upload_model(), submit_compile_job() 和submit_profile_job().

分析TorchScript模型性能

如果您已经保存了traced或脚本化的torch模型(使用torch.jit.save保存),则可以直接提交。我们将以mobilenet_v2.pt为例。与前面的示例类似,只有在将TorchScript模型编译到合适的目标之后,才能对其进行概要评测。

import qai_hub as hub

# Compile previously saved torchscript model

compile_job = hub.submit_compile_job(

    model="mobilenet_v2.pt",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

    input_specs=dict(image=(1, 3, 224, 224)),

)

assert isinstance(compile_job, hub.CompileJob)

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

assert isinstance(profile_job, hub.ProfileJob)

分析ONNX模型性能

Qualcomm AI Hub还支持ONNX。与前面的示例类似,只有在ONNX模型编译到合适的目标之后,才能对其进行评测。我们将以 mobilenet_v2.onnx为例。

import qai_hub as hub

compile_job = hub.submit_compile_job(

    model="mobilenet_v2.onnx",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

assert isinstance(compile_job, hub.CompileJob)

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23"),

)

assert isinstance(profile_job, hub.ProfileJob)

分析TensorFlow Lite模型性能

Qualcomm AI Hub还支持以.tflite格式对模型Profiling。我们将使用SqueezeNet10 model。

import qai_hub as hub

# Profile TensorFlow Lite model (from file)

profile_job = hub.submit_profile_job(

    model="SqueezeNet10.tflite",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

在多个设备上分析模型

通常,对多个设备的性能进行建模是很重要的。在本例中,我们介绍了最近的Snapdragon®8 Gen 1和Snapdragon™8 Gen 2设备,以获得良好的测试覆盖率。我们重用TensorFlow Lite示例中的SqueezeNet model,但这次我们在两个设备上对其进行了评测。

import qai_hub as hub

devices = [

    hub.Device("Samsung Galaxy S23 Ultra"),  # Snapdragon 8 Gen 2

    hub.Device("Samsung Galaxy S22 Ultra 5G"),  # Snapdragon 8 Gen 1

]

jobs = hub.submit_profile_job(model="SqueezeNet10.tflite", device=devices)

为每个设备创建一个单独的评测任务。

上传模型以进行评测

可以在不提交评测任务的情况下上传模型(例如SqueezeNet10.tflite)。

import qai_hub as hub

hub_model = hub.upload_model("SqueezeNet10.tflite")

print(hub_model)

现在,您可以使用上传的模型的model_id来运行评测任务。

import qai_hub as hub

# Retrieve model using ID

hub_model = hub.get_model("mabc123")

# Submit job

profile_job = hub.submit_profile_job(

            model=hub_model,

            device=hub.Device("Samsung Galaxy S23 Ultra"),

            input_shapes=dict(x=(1, 3, 224, 224)),

)

分析已编译好的模型

我们可以重用以前作业中的模型来启动新的评测任务(例如,在不同的设备上)。这样可以避免多次上传同一个模型。

import qai_hub as hub

# Get the model from the profile job

profile_job = hub.get_job("jabc123")

hub_model = profile_job.model

# Run the model from the job

new_profile_job = hub.submit_profile_job(

    model=hub_model,

    device=hub.Device("Samsung Galaxy S22 Ultra 5G"),

)

作者:高通工程师,戴忠忠(Zhongzhong Dai)

这篇关于Qualcomm AI Hub-示例(二)模型性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834338

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6