算法沉淀——动态规划之斐波那契数列模型(leetcode真题剖析)

本文主要是介绍算法沉淀——动态规划之斐波那契数列模型(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之斐波那契数列模型

  • 01.第 N 个泰波那契数
  • 02.三步问题
  • 03.使用最小花费爬楼梯
  • 04.解码方法

动态规划(Dynamic Programming,简称DP)是一种通过将原问题分解为相互重叠的子问题并仅仅解决每个子问题一次,将其解存储起来,避免重复计算,从而提高效率的算法优化技术。它通常用于求解最优化问题。

动态规划的基本思想是利用之前已经计算过的结果,通过递推关系式来计算当前问题的解。它具有以下关键特点:

  1. 最优子结构: 问题的最优解可以通过其子问题的最优解来构造。
  2. 重叠子问题: 原问题可以分解为若干个子问题,而这些子问题可能会被多次重复求解。
  3. 状态转移方程: 动态规划通过定义状态和状态之间的转移关系来描述问题。通过状态转移方程,我们可以推导出问题的最优解。

动态规划可以分为两种主要类型:自顶向下的记忆化搜索和自底向上的递推法。

  • 自顶向下(Top-Down): 利用递归的方式,通过递归调用来解决问题,并通过记忆化技术来避免重复计算,即缓存已经计算过的子问题的结果。
  • 自底向上(Bottom-Up): 从最小的子问题开始,通过迭代的方式逐步求解规模更大的问题,通常使用数组或表格来存储子问题的结果,避免了递归的开销。

动态规划常用于求解具有最优子结构和重叠子问题性质的问题,例如最短路径问题、背包问题、编辑距离问题等。

典型的动态规划问题包括:

  • 斐波那契数列: F(n) = F(n-1) + F(n-2)。
  • 最长上升子序列(LIS): 求一个序列中最长的递增子序列的长度。
  • 背包问题: 在给定限制条件下,选择最优的物品放入背包,使得价值最大。
  • 最短路径问题: 求图中两个节点之间的最短路径。
  • 编辑距离问题: 计算两个字符串之间的最小编辑操作次数。

动态规划算法是一种强大的算法设计思想,可以在很多问题中得到应用,但需要注意问题是否满足最优子结构和重叠子问题的条件。

01.第 N 个泰波那契数

题目链接:https://leetcode.cn/problems/n-th-tribonacci-number/

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

示例 2:

输入:n = 25
输出:1389537

提示:

  • 0 <= n <= 37
  • 答案保证是一个 32 位整数,即 answer <= 2^31 - 1

思路

动态规划的题目主要分为5个步骤。

1.状态表示:这道题可以根据题目要求直接给出,dp[i]等于第i个泰波纳契数。

2.状态转移方程:同样原题已经给出,dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。

3.初始化:我们只需要将前三个数初始化即可,防止越界。

4.填表顺序:从左往右。

5.返回值:dp[n]。

代码

class Solution {
public:int tribonacci(int n) {int dp[38];dp[0]=0,dp[1]=dp[2]=1;for(int i=3;i<=n;++i)dp[i]=dp[i-1]+dp[i-2]+dp[i-3];return dp[n];}
};

02.三步问题

题目链接:https://leetcode.cn/problems/three-steps-problem-lcci/

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:

 输入:n = 3 输出:4说明: 有四种走法

示例2:

 输入:n = 5输出:13

提示:

  1. n范围在[1, 1000000]之间

思路

  1. 状态表示: 定义状态 dp[i] 表示到达第 i 个位置时的总方法数。
  2. 状态转移方程: 根据题目要求,dp[i] 可以由前三个状态转移而来:dp[i - 1]dp[i - 2]dp[i - 3]。因此,状态转移方程为 dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
  3. 取模操作: 由于题目要求结果取模,需要在每次计算时都进行取模操作,防止整数溢出。
  4. 初始化: 需要初始化前三个位置的值,即 dp[1] = 1dp[2] = 2dp[3] = 4
  5. 填表顺序: 从左到右填表,逐步计算出 dp[i] 的值。
  6. 返回值: 返回 dp[n] 的值,即到达第 n 个位置时的总方法数。

这样的动态规划问题通常可以通过填表的方式解决,遵循以上步骤可以得到最终的解。

代码

class Solution {const int Mod = 1e9+7;
public:int waysToStep(int n) {if(n==1||n==2) return n;if(n==3) return 4;vector<long long> dp(n+1);dp[1]=1,dp[2]=2,dp[3]=4;for(int i=4;i<=n;i++)dp[i]=(dp[i-1]+dp[i-2]%Mod+dp[i-3])%Mod;return dp[n];}
};

03.使用最小花费爬楼梯

题目链接:https://leetcode.cn/problems/min-cost-climbing-stairs/

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

思路一

  1. 状态表示: 定义状态 dp[i] 表示到达第 i 个位置时的最小花费。注意:到达第 i 个位置的时候,第 i 位置的花费不需要算上。
  2. 状态转移方程: 根据题目要求,dp[i] 可以由前两个状态转移而来:dp[i - 1]dp[i - 2]。因此,状态转移方程为 dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
  3. 初始化: 需要初始化前两个位置的值,即 dp[0] = dp[1] = 0,因为不需要任何花费就可以直接站在第 0 层和第 1 层上。
  4. 填表顺序: 从左到右填表,逐步计算出 dp[i] 的值。
  5. 返回值: 返回 dp[n] 的值,即到达第 n 个位置时的最小花费。

代码一

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();vector<int> dp(n+1,0);dp[0]=dp[1]=0;for(int i=2;i<=n;++i)dp[i]=min(cost[i-1]+dp[i-1],cost[i-2]+dp[i-2]);return dp[n];}
};

思路二

  1. 状态表示: 定义状态 dp[i] 表示从第 i 个位置出发到达楼顶时的最小花费。
  2. 状态转移方程: 根据题目要求,dp[i] 可以由后两个状态转移而来:dp[i + 1]dp[i + 2]。因此,状态转移方程为 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i]
  3. 初始化: 为了保证填表的时候不越界,需要初始化最后两个位置的值,结合状态表表示得到 dp[n - 1] = cost[n - 1]dp[n - 2] = cost[n - 2]
  4. 填表顺序: 从右到左填表,逐步计算出 dp[i] 的值。
  5. 返回值: 返回 dp[0]dp[1]中最小的值。

代码二

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();vector<int> dp(n,0);dp[n-1]=cost[n-1],dp[n-2]=cost[n-2];for(int i=n-3;i>=0;--i)dp[i]=min(cost[i]+dp[i+1],cost[i]+dp[i+2]);return min(dp[0],dp[1]);}
};

04.解码方法

题目链接:https://leetcode.cn/problems/decode-ways/

一条包含字母 A-Z 的消息通过以下映射进行了 编码

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"

解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" 可以映射为:

  • "AAJF" ,将消息分组为 (1 1 10 6)
  • "KJF" ,将消息分组为 (11 10 6)

注意,消息不能分组为 (1 11 06) ,因为 "06" 不能映射为 "F" ,这是由于 "6""06" 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数

题目数据保证答案肯定是一个 32 位 的整数。

示例 1:

输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。

示例 2:

输入:s = "226"
输出:3
解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。

示例 3:

输入:s = "06"
输出:0
解释:"06" 无法映射到 "F" ,因为存在前导零("6" 和 "06" 并不等价)。

提示:

  • 1 <= s.length <= 100
  • s 只包含数字,并且可能包含前导零。

思路

  1. 状态表示: 定义状态 dp[i] 表示字符串中 [0, i] 区间上,一共有多少种编码方法。

  2. 状态转移方程: 分析 i 位置的 dp 值,有两种解码情况:

    • s[i] 在区间 [1, 9] 内时,说明 s[i] 可以单独解码,此时 dp[i] += dp[i - 1]
    • s[i - 1]s[i] 结合后在区间 [10, 26] 内时,说明前两个字符有一种编码方式,此时 dp[i] += dp[i - 2]

    综上所述,状态转移方程为:

    dp[i] = (s[i] != '0' ? dp[i - 1] : 0) + (10 <= stoi(s.substr(i - 1, 2)) <= 26 ? dp[i - 2] : 0)
    
  3. 初始化: 需要初始化前两个位置的值:

    • 初始化 dp[0]
      • s[0] == '0' 时,没有编码方法,结果 dp[0] = 0
      • s[0] != '0' 时,能编码成功,此时 dp[0] = 1
    • 初始化 dp[1]
      • s[1] 在区间 [1, 9] 内时,能单独编码,此时 dp[1] += dp[0]
      • s[0]s[1] 结合后的数在区间 [10, 26] 内时,说明前两个字符有一种编码方式,此时 dp[1] += 1
  4. 填表顺序: 从左往右填表,逐步计算出 dp[i] 的值。

  5. 返回值: 返回 dp[n - 1] 的值,表示在 [0, n - 1] 区间上的编码方法数量。

代码

class Solution {
public:int numDecodings(string s) {int n=s.size();vector<int> dp(n);dp[0]=s[0]!='0';if(n==1) return dp[0];if(s[1]>='1'&&s[1]<='9') dp[1]+=dp[0];int t=(s[0]-'0')*10+s[1]-'0';if(t>=10&&t<=26) dp[1]+=1;for(int i=2;i<n;++i){if(s[i]>='1'&&s[i]<='9') dp[i]+=dp[i-1];int t=(s[i-1]-'0')*10+s[i]-'0';if(t>=10&&t<=26) dp[i]+=dp[i-2];}return dp[n-1];}
};

这篇关于算法沉淀——动态规划之斐波那契数列模型(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744633

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二