【算法专题】动态规划之斐波那契数列模型

2024-01-10 08:04

本文主要是介绍【算法专题】动态规划之斐波那契数列模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划1.0

  • 动态规划 - - - 斐波那契数列模型
    • 1. 第 N 个泰波那契数
    • 2. 三步问题
    • 3. 使用最小花费爬楼梯
    • 4. 解码方法

动态规划 - - - 斐波那契数列模型

1. 第 N 个泰波那契数

题目链接 -> Leetcode -1137. 第 N 个泰波那契数

Leetcode -1137. 第 N 个泰波那契数

题目:泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn + 3 = Tn + Tn + 1 + Tn + 2
给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

示例 2:
输入:n = 25
输出:1389537

提示:
0 <= n <= 37
答案保证是一个 32 位整数,即 answer <= 2 ^ 31 - 1。

思路:

  1. 状态表示:这道题可以「根据题目的要求」直接定义出状态表示:dp[i] 表示:第 i 个泰波那契数的值。
  2. 状态转移方程:dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
  3. 初始化:从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进行推导的,因为 dp[-2] 或 dp[-1] 不是一个有效的数据。因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题目中已经告诉我们 dp[0] = 0, dp[1] = dp[2] = 1 。
  4. 填表顺序:从左往右
  5. 返回值:应该返回 dp[n] 的值。

代码如下:

		class Solution {public:int tribonacci(int n){if (n == 0 || n == 1) return n;// 动态规划,当前位置的值等于前三个位置的值相加vector<int> dp(n + 1);dp[1] = dp[2] = 1; // 先初始化前面的位置// 开始使用动态规划for (int i = 3; i <= n; i++)dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];return dp[n];}};

2. 三步问题

题目链接 -> Leetcode -面试题 08.01.三步问题

Leetcode -面试题 08.01.三步问题

题目:三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。
实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1 :
输入:n = 3
输出:4
说明 : 有四种走法

示例2 :
输入:n = 5
输出:13

提示 :

  • n范围在[1, 1000000]之间

思路:

  1. 状态表示:dp[i] 表示:到达 i 位置时,一共有多少种方法。

  2. 状态转移方程:
    以 i 位置状态的最近的⼀步,来分情况讨论:
    如果 dp[i] 表示小孩上第 i 阶楼梯的所有方式,那么它应该等于所有上一步的方式之和:
    i. 上一步上一级台阶, dp[i] += dp[i - 1] ;
    ii. 上一步上两级台阶, dp[i] += dp[i - 2] ;
    iii. 上一步上三级台阶, dp[i] += dp[i - 3] ;
    综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

  3. 初始化从我们的递推公式可以看出, dp[i] 在 i = 0, i = 1 以及 i = 2 的时候是没有办法进行推导的,因为 dp[-3] dp[-2] 或 dp[-1] 不是⼀个有效的数据。因此我们需要在填表之前,将 1, 2, 3 位置的值初始化。根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。

  4. 填表顺序:从左往右

  5. 返回值:应该返回 dp[n] 的值。

代码如下:

		class Solution {public:int waysToStep(int n){if (n == 1 || n == 2) return n;vector<int> dp(n + 1);dp[1] = 1, dp[2] = 2, dp[3] = 4; // 初始化// 走到当前台阶的方法数等于,到达前三个台阶的方法数相加;// 因为前三个台阶走一步,走两步,走三步都可以到达当前台阶,加上这一步、两步或三步,都是同一种方法for (int i = 4; i <= n; i++)dp[i] = ((dp[i - 1] + dp[i - 2]) % 1000000007 + dp[i - 3]) % 1000000007;return dp[n];}};

3. 使用最小花费爬楼梯

题目链接 -> Leetcode -746.使用最小花费爬楼梯

Leetcode -746.使用最小花费爬楼梯

题目:给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10, 15, 20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。

示例 2:
输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。
  • 总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

思路:

  1. 状态表示:dp[i] 表示:到达 i 位置时的最小花费。(注意:到达 i 位置的时候,i 位置的钱不需要算上)
  2. 状态转移方程:根据最近的一步,分情况讨论:
  • 先到达 i - 1 的位置,然后支付 cost[i - 1] ,接下来走一步走到 i 位置:dp[i - 1] + csot[i - 1] ;
  • 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来走一步走到 i 位置:dp[i - 2] + csot[i - 2] 。
  1. 初始化:从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到 dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
  2. 填表顺序:根据「状态转移方程」可得,遍历的顺序是「从左往右」。
  3. 返回值:根据「状态表示以及题目要求」,需要返回 dp[n] 位置的值。

代码如下:

		class Solution {public:int minCostClimbingStairs(vector<int>& cost){int n = cost.size();// 从第三个阶梯开始,当前阶梯往上爬的费用等于前两个费用的较小值加上爬当前阶梯需要的费用for (int i = 2; i < n; i++)cost[i] = min(cost[i - 1], cost[i - 2]) + cost[i];// 最后返回最后倒数第一个和第二个阶梯的最小值return min(cost[n - 1], cost[n - 2]);}};

4. 解码方法

题目链接 -> Leetcode -91.解码方法

Leetcode -91.解码方法

题目:一条包含字母 A - Z 的消息通过以下映射进行了 编码 :

‘A’ -> “1”
‘B’ -> “2”

‘Z’ -> “26”

要解码已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:

“AAJF” ,将消息分组为(1 1 10 6)
“KJF” ,将消息分组为(11 10 6)
注意,消息不能分组为(1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。

示例 1:
输入:s = “12”
输出:2
解释:它可以解码为 “AB”(1 2)或者 “L”(12)。

示例 2:
输入:s = “226”
输出:3
解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。

示例 3:
输入:s = “06”
输出:0
解释:“06” 无法映射到 “F” ,因为存在前导零(“6” 和 “06” 并不等价)。

提示:

  • 1 <= s.length <= 100
  • s 只包含数字,并且可能包含前导零。

思路:

  1. 状态表示:根据上题的经验,对于大多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做文章,这里我们继续尝试「用 i 位置为结尾」结合「题目要求」来定义状态表示。
    dp[i] 表示:字符串中 [0,i] 区间上,一共有多少种编码方法
  2. 状态转移方程:定义好状态表示,我们就可以分析 i 位置的 dp 值,关于 i 位置的编码状况,我们可以分为下面两种情况:
    i. 让 i 位置上的数单独解码成⼀个字母;
    ii. 让 i 位置上的数与 i - 1 位置上的数结合,解码成一个字母。

    下面我们就上面的两种解码情况,继续分析:
  • 让 i 位置上的数单独解码成一个字母,就存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解码的,那么此时 [0, i] 区间上的解码方法应该等于 [0, i - 1] 区间上的解码方法。因为 [0, i - 1] 区间上的所有解码结果,后面填上⼀个 i 位置解码后的字母就可以了。此时 dp[i] = dp[i - 1] ;
    ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码方法。因为 i 位置如果单独参与解码,但是解码失败了,那么前面做的就全部白费了。此时 dp[i] = 0 。
  • 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成一个字母,也存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码方法应该等于 [0, i - 2 ] 区间上的解码方法,原因同上。此时 dp[i] = dp[i - 2] ;
    ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这里⼀定要注意 00 01 02 03 04 … 这几种情况),那么此时 [0, i] 区间上的解码方法就不存在了,原因依旧同上。此时 dp[i] = 0 。

综上所述: dp[i] 最终的结果应该是上面四种情况下,解码成功的两种的累加和(因为我们关心的是解码方法,既然解码失败,就不用加入到最终结果中去),因此可以得到状态转移方程( dp[i] 默认初始化为 0 ):

  • 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
  • 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] += dp[i - 2] ;

如果上述两个判断都不成立,说明没有解码方法, dp[i] 就是默认值 0 .

  1. 初始化:可以在最前面加上一个辅助结点,帮助我们初始化。使用这种技巧要注意两个点:
    i. 辅助结点里面的值要保证后续填表是正确的;
    ii. 下标的映射关系

  2. 填表顺序:「从左往右」

  3. 返回值:应该返回 dp[n - 1] 的值,表示在 [0, n - 1] 区间上的编码方法。

代码如下:

		class Solution {public:int numDecodings(string s){int n = s.size();// 创建一个 dp 表,多开一个空间,即添加辅助位置初始化vector<int> dp(n + 1);dp[0] = 1;   // 因为前面的初始化会影响后面的填表,所以此处应该初始化为1// 只要第一个字符不是 0,那么当前位置的解码数就是1if (s[0] != '0') dp[1] = 1;// 开始填表for (int i = 2; i <= n; i++){// 单独自己一个数编码(dp表的下标与原字符串的下标偏移量为1,因为dp表多开了一个空间)if (s[i - 1] >= '1' && s[i - 1] <= '9'){dp[i] += dp[i - 1];}// 和前一个数联合起来编码int tmp = (s[i - 2] - '0') * 10 + (s[i - 1] - '0');if (tmp >= 10 && tmp <= 26){dp[i] += dp[i - 2];}}return dp[n];}};

这篇关于【算法专题】动态规划之斐波那契数列模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590110

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.