商品销售数据爬取分析可视化系统 爬虫+机器学习 淘宝销售数据 预测算法模型 大屏 大数据毕业设计(附源码)✅

本文主要是介绍商品销售数据爬取分析可视化系统 爬虫+机器学习 淘宝销售数据 预测算法模型 大屏 大数据毕业设计(附源码)✅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
python语言、Django框架、Vue前端框架、机器学习预测算法(线性回归模型预测商品的销量)
MySQL数据库、selenium爬虫技术、Echarts可视化、淘宝商品数据
商品销售数据爬取分析可视化系统 大数据 毕业设计 爬虫+机器学习 淘宝销售数据 预测算法模型 大屏

商品销售数据爬取分析可视化预测系统是一个基于Python语言和Django框架开发的应用程序。它通过使用selenium爬虫技术从淘宝网上获取商品的销售数据,并使用MySQL数据库存储这些数据。

2、项目界面

(1)商品数据可视化大屏

在这里插入图片描述

(2)邮寄中国分布图

在这里插入图片描述

(3)商品数据详情

在这里插入图片描述

(4)商品各类型各省份销售额、销售量数据折线图

在这里插入图片描述

(5)词云图分析

在这里插入图片描述

(6)机器学习算法预测(线性回归模型预测商品的销量)

在这里插入图片描述

(7)后台数据管理

在这里插入图片描述

3、项目说明

商品销售数据爬取分析可视化预测系统是一个基于Python语言和Django框架开发的应用程序。它通过使用selenium爬虫技术从淘宝网上获取商品的销售数据,并使用MySQL数据库存储这些数据。

系统的前端界面使用了Vue前端框架,可以实现用户与系统的交互操作。用户可以通过系统界面输入要查询的商品信息,并选择相应的时间范围来获取该商品的销售数据。

系统使用机器学习预测算法(线性回归模型)来对商品的销量进行预测。通过对历史销售数据的分析和建模,系统可以根据当前的销售情况预测未来一段时间内的商品销量。

为了更直观地展示数据,系统使用了Echarts可视化库来生成各种图表和图形。用户可以通过系统界面查看商品销售数据的趋势图、柱状图、饼图等,以便更好地分析和理解数据。

总之,商品销售数据爬取分析可视化预测系统能够帮助用户方便地获取商品销售数据、分析趋势,并通过机器学习算法预测商品的销量,从而为用户提供决策参考。

4、核心代码


from django.shortcuts import render
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt# Create your views here.
from .utils import getScreenData
from .utils import getSummaryData
from .utils import getCurveData
from .utils import getDeliveryData
from .utils import getPreData
from .machine import predication
from myApp.models import *
@csrf_exempt
def screenData(request):if request.method == 'GET':cityList,volumnList = getScreenData.getSquareData()pieList = getScreenData.getPieDatta()mapData = getScreenData.getMapData()LineRowData,LineColData = getScreenData.getLineData()circlieList = getScreenData.getCircleData()return JsonResponse({'cityList':cityList,'volumnList':volumnList,'pieList':pieList,'mapData':mapData,'LineRowData':LineRowData,'LineColData':LineColData,'circlieList':circlieList})def summary(request):if request.method == 'GET':goodsCity,goodsType = getSummaryData.getChangeList()defaultCity = '不限'defaultType = '不限'if request.GET.get('city'): defaultCity = request.GET.get('city')if request.GET.get('type'): defaultType = request.GET.get('type')print(defaultCity,defaultType)goodsData = getSummaryData.getSummary(defaultCity,defaultType)return JsonResponse({'goodsCity':goodsCity,'goodsType':goodsType,'goodsData':goodsData})def curve(request):if request.method == 'GET':goodsType = getCurveData.getChangeList()defaultType = '不限'if request.GET.get('list'): defaultType = request.GET.get('list')RowList,OneColList,TwoColList = getCurveData.getRealData(defaultType)print(defaultType)return JsonResponse({'goodsType':goodsType,'RowList':RowList,'OneColList':OneColList,'TwoColList':TwoColList})def delivery(request):if request.method == 'GET':defaultDelivery = '不限'diliveryList = getDeliveryData.getChangeList()if request.GET.get('list'): defaultDelivery = request.GET.get('list')print(defaultDelivery)mapData = getDeliveryData.getGeoData(defaultDelivery)return JsonResponse({'diliveryList':diliveryList,'mapData':mapData})def predictionData(request):if request.method == 'GET':typeList,addressList,deliveryList = getPreData.getListData()type = ''price = 0address = ''delivery = ''if request.GET.get('type'): type = request.GET.get('type')if request.GET.get('price'): price = int(request.GET.get('price'))if request.GET.get('address'): address = request.GET.get('address')if request.GET.get('delivery'): delivery = request.GET.get('delivery')print(type,price,address,delivery)preVolumn = ''if type and price and address and delivery:trainData = predication.getData()model = predication.model_train(trainData)preVolumn = predication.pred(model,type,price,address,delivery)print(preVolumn)return JsonResponse({'typeList':typeList,'addressList':addressList,'deliveryList':deliveryList,'preVolumn':preVolumn})@csrf_exempt
def login(request):if request.method == 'POST':uname = request.POST.get('username')pwd = request.POST.get('password')message = ''print(uname,pwd)try:user = User.objects.get(username=uname,password=pwd)print(user)message = '登录成功'print(message)return JsonResponse({'username':uname,'message': message})except:print(1)return JsonResponse({'message': '登录失败'})
@csrf_exempt
def register(request):if request.method == 'POST':uname = request.POST.get('username')pwd = request.POST.get('password')message = ''print(uname,pwd)try:User.objects.get(username=uname)message = '账号已存在'except:if not uname or not pwd:message = '不允许为空'else:User.objects.create(username=uname,password=pwd)return JsonResponse({'message': message})

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

这篇关于商品销售数据爬取分析可视化系统 爬虫+机器学习 淘宝销售数据 预测算法模型 大屏 大数据毕业设计(附源码)✅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/558610

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类