DataWhale-树模型与集成学习-Task02-Cart分类树代码实现-202110

2023-12-27 21:58

本文主要是介绍DataWhale-树模型与集成学习-Task02-Cart分类树代码实现-202110,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    助教老师实现了Cart回归树,在老师代码的基础上,实现了Cart分类树,代码如下:

import numpy as npdef Gini(y):gn=1.0n=y.shape[0]for i in np.unique(y):gn=gn-(np.sum(y==i)/n)**2return gndef argmax(y):l=sorted([(np.sum(y==i),i) for i in np.unique(y)],reverse=True)return l[0][1]class Node:def __init__(self, depth, idx):self.depth = depthself.idx = idxself.left = Noneself.right = Noneself.feature = Noneself.pivot = Noneclass Tree:def __init__(self, max_depth):self.max_depth = max_depthself.X = Noneself.y = Noneself.feature_importances_ = Nonedef _able_to_split(self, node):return (node.depth < self.max_depth) & (node.idx.sum() >= 2)def _get_inner_split_score(self, to_left, to_right):total_num = to_left.sum() + to_right.sum()left_val = to_left.sum() / total_num * Gini(self.y[to_left])right_val = to_right.sum() / total_num * Gini(self.y[to_right])return left_val + right_valdef _inner_split(self, col, idx):data = self.X[:, col]best_val = np.inftyfor pivot in data[:-1]:to_left = (idx==1) & (data<=pivot)to_right = (idx==1) & (~to_left)if to_left.sum() == 0 or to_left.sum() == idx.sum():continueHyx = self._get_inner_split_score(to_left, to_right)if best_val > Hyx:best_val, best_pivot = Hyx, pivotbest_to_left, best_to_right = to_left, to_rightreturn best_val, best_to_left, best_to_right, best_pivotdef _get_conditional_entropy(self, idx):best_val = np.inftyfor col in range(self.X.shape[1]):Hyx, _idx_left, _idx_right, pivot = self._inner_split(col, idx)if best_val > Hyx:best_val, idx_left, idx_right = Hyx, _idx_left, _idx_rightbest_feature, best_pivot = col, pivotreturn best_val, idx_left, idx_right, best_feature, best_pivotdef split(self, node):# 首先判断本节点是不是符合分裂的条件if not self._able_to_split(node):return None, None, None, None# 计算H(Y)entropy = Gini(self.y[node.idx==1])# 计算最小的H(Y|X)(conditional_entropy,idx_left,idx_right,feature,pivot) = self._get_conditional_entropy(node.idx)# 计算信息增益G(Y, X)info_gain = entropy - conditional_entropy# 计算相对信息增益relative_gain = node.idx.sum() / self.X.shape[0] * info_gain# 更新特征重要性self.feature_importances_[feature] += relative_gain# 新建左右节点并更新深度node.left = Node(node.depth+1, idx_left)node.right = Node(node.depth+1, idx_right)self.depth = max(node.depth+1, self.depth)return idx_left, idx_right, feature, pivotdef build_prepare(self):self.depth = 0self.feature_importances_ = np.zeros(self.X.shape[1])self.root = Node(depth=0, idx=np.ones(self.X.shape[0]) == 1)def build_node(self, cur_node):if cur_node is None:return idx_left, idx_right, feature, pivot = self.split(cur_node)cur_node.feature, cur_node.pivot = feature, pivotself.build_node(cur_node.left)self.build_node(cur_node.right)def build(self):self.build_prepare()self.build_node(self.root)def _search_prediction(self, node, x):if node.left is None and node.right is None:return argmax(self.y[node.idx])if x[node.feature] <= node.pivot:node = node.leftelse:node = node.rightreturn self._search_prediction(node, x)def predict(self, x):return self._search_prediction(self.root, x)class DecisionTreeClassification:"""max_depth控制最大深度,类功能与sklearn默认参数下的功能实现一致"""def __init__(self, max_depth):self.tree = Tree(max_depth=max_depth)def fit(self, X, y):self.tree.X = Xself.tree.y = yself.tree.build()self.feature_importances_ = (self.tree.feature_importances_ / self.tree.feature_importances_.sum())return selfdef predict(self, X):return np.array([self.tree.predict(x) for x in X])

这篇关于DataWhale-树模型与集成学习-Task02-Cart分类树代码实现-202110的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/544403

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程