Python使用FastAPI实现大文件分片上传与断点续传功能

2025-09-14 23:50

本文主要是介绍Python使用FastAPI实现大文件分片上传与断点续传功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继...

大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题。分片上传 + 断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继续,从而显著提升成功率与用户体验。

本文提供一套 可直接运行 的 Python(FastAPI)服务端实现,配套 Python 客户端脚本 与少量前端思路,支持:

  • 分片上传
  • 断点续传(查询已传分片)
  • 全量合并
  • 可选内容校验(SHA256/MD5)
  • 并发安全(文件级锁)
  • 可平滑接入对象存储(MinIO/S3)示例

一、接口设计

接口方法描述
/upload/initPOST初始化上传,创建 upload_id 与分片元数据
/upload/chunkPOST上传单个分片,参数:upload_id、index
/upload/statusGET查询某 upload_id 已上传分片列表
/upload/mergePOST全量合并分片,生成最终文件

说明:index 从 1 开始;建议固定 chunk_size(如 5MB/10MB),便于计算总分片数 total_chunks = ceil(size/chunk_size)。

二、服务端实现(FastAPI)

2.1 运行环境

python -m venv venv
source venv/bin/activate  # Windows 使用 venv\Scripts\activate
pip install fastapi uvicorn pydantic[dotenv] python-multipart

注:本文仅用到标准库 + FastAPI 依赖;如需对象存储支持,再安装 minio 或 boto3。

2.2 目录结构建议

.
├─ server.py              # FastAPI 服务端
├─ upload.db              # SQLite数据库(运行后生成)
└─ uploads/
   └─ {upload_id}/
      ├─ chunks/         # 分片临时目录
      ├─ meta.json       # 元信息(冗余存储,辅助排查)
      └─ final/          # 最终文件目录

2.3 server.py(可直接运行)

# server.py
import hashlib
import json
import os
import sqlite3
import threading
from contextlib import contextmanager
from math import ceil
from pathlib import Path
from typing import List, Optional

from fastapi import FastAPI, UploadFile, File, HTTPException, Query, Form
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import uvicorn

BASE_DIR = Path(__file__).parent.resolve()
DATA_DIR = BASE_DIR / "uploads"
DB_PATH = BASE_DIR / "upload.db"
DATA_DIR.mkdir(exist_ok=True)

app = FastAPI(title="Chunked Upload (FastAPI)")

# ---------- 并发锁(同一 upload_id 合并上锁) ----------
_merge_locks = {}
_merge_locks_global = threading.Lock()

def _get_lock(upload_id: str) -> threading.Lock:
    with _merge_locks_global:
        if upload_id not in _merge_locks:
            _merge_locks[upload_id] = threading.Lock()
        return _merge_locks[upload_id]

# ---------- SQLite 简单封装 ----------
def init_db():
    with sqlite3.connect(DB_PATH) as conn:
        c = conn.cursor()
        c.execute("""CREATE TABLE IF NOT EXISTS uploads(
            upload_id TEXT PRIMARY KEY,
            filename TEXT,
            size INTEGER,
            chunk_size INTEGER,
            total_chunks INTEGER,
            file_hash TEXT
        )""")
        c.execute("""CREATE TABLE IF NOT EXISTS chunks(
            upload_id TEXT,
            idx INTEGER,
            size INTEGER,
            hash TEXT,
            PRIMARY KEY(upload_id, idx)
        )""")
        conn.commit()

@contextmanager
def db() :
    conn = sqlite3.connect(DB_PATH)
    try:
        yield conn
    finally:
        conn.close()

# ---------- 工具 ----------
def sha256_of_bytes(b: bytes) -> str:
    h = hashlib.sha256()
    h.update(b)
    return h.hexdigest()

def md5_of_bytes(b: bytes) -> str:
    h = hashlib.md5()
    h.update(b)
    return h.hexdigest()

def ensure_upload_folders(upload_id: str) -> Path:
    root = DATA_DIR / upload_id
    (root / "chunks").mkdir(parents=True, exist_ok=True)
    (root / "final").mkdir(parents=True, exist_ok=True)
    return root

def write_meta(root: Path, meta: dict):
    (root / "meta.json").write_text(json.dumps(meta, ensure_ascii=False, indent=2))

# ---------- 请求/响应模型 ----------
class InitReq(BaseModel):
    filename: str
    size: int
    chunk_size: int
    file_hash: Optional[str] = None   # 可选:客户端传文件整体 SHA256/MD5

class InitResp(BaseModel):
    upload_id: str
    total_chunks: int

class StatusResp(BaseModel):
    upload_id: str
    uploaded: List[int]
    total_chunks: int

class MergeReq(BaseModel):
    upload_id: str
    expected_hash: Optional[str] = None  # 可选:合并后对整文件校验

# ---------- 路由 ----------
@app.post("/upload/init", response_model=InitResp)
def init_upload(req: InitReq):
    if req.size <= 0 or req.chunk_size <= 0:
        raise HTTPException(400, "size/chunk_size 必须为正整数")
    total = ceil(req.size / rwww.chinasem.cneq.chunk_size)

    upload_id = hashlib.sha1(f"{req.filename}:{req.size}:{rexmFwiantaq.chunk_size}:{req.file_hash or ''}".encode()).hexdigest()
    root = ensure_upload_folders(upload_id)

    with db() as conn:
        c = conn.cursor()
        # UPSERT
        c.execute("INSERT OR IGNORE INTO uploads(upload_id, filename, size, chunk_size, total_chunks, file_hash) VALUES(?,?,?,?,?,?)",
                  (upload_id, req.filename, req.size, req.chunk_size, total, req.file_hash))
        conn.commit()

    write_meta(root, {
        "upload_id": upload_id,
        "filename": req.filename,
        "size": req.size,
        "chunk_size": req.chunk_size,
        "total_chunks": total,
        "file_hash": req.file_hash
    })
    return InitResp(upload_id=upload_id, total_chunks=total)

@app.post("/upload/chunk")
async def upload_chunk(
    upload_id: str = Query(..., description="init 返回的 upload_id"),
    index: int = Query(..., ge=1, description="分片序号,从1开始"),
    content_hash: Optional[str] = Query(None, description="可选:分片内容校验(sha256或md5,客户端自定义)"),
    file: UploadFile = File(...)
):
    # 检查 upload 是否存在
    with db() as conn:
        c = conn.cursor()
       js row = c.execute("SELECT total_chunks FROM uploads WHERE upload_id=?", (upload_id,)).fetchone()
        if not row:
            raise HTTPException(404, "upload_id 不存在,请先 /upload/init")
        total_chunks = row[0]

    if index > total_chunks:
        raise HTTPException(400, f"index 超出总分片数:{total_chunks}")

    root = ensure_upload_folders(upload_id)
    chunk_path = root / "chunks" / f"{index}.part"

    # 将分片写入临时文件
    data = await file.read()
    if content_hash:
        # 这里兼容 md5/sha256:长度32大概率md5,长度64大概率sha256,也可自定义一个 query param 指定算法
        calc = md5_of_bytes(data) if len(content_hash) == 32 else sha256_of_bytes(data)
        if calc != content_hash:
            raise HTTPException(400, "content_hash 校验失败")

    with open(chunk_path, "wb") as f:
        f.write(data)

    # 记录 DB
    with db() as conn:
        c = conn.cursor()
        c.execute("INSERT OR REPLACE INTO chunks(upload_id, idx, size, hash) VALUES(?,?,?,?)",
                  (upload_id, index, len(data), content_hash))
        conn.commit()

    return JSONResponse({"message": "ok", "index": index, "size": len(data)})

@app.get("/upload/status", response_model=StatusResp)
def upload_status(upload_xmFwiantaid: str):
    with db() as conn:
        c = conn.cursor()
        up = c.execute("SELECT total_chunks FROM uploads WHERE upload_id=?", (upload_id,)).fetchone()
        if not up:
            raise HTTPException(404, "upload_id 不存在")
        total = up[0]
        rows = c.execute("SELECT idx FROM chunks WHERE upload_id=? ORDER BY idx", (upload_id,)).fetchall()
        uploaded = [r[0] for r in rows]
    return StatusResp(upload_id=upload_id, uploaded=uploaded, total_chunks=total)

@app.post("/upload/merge")
def upload_merge(req: MergeReq):
    # 防止并发重复合并
    lock = _get_lock(req.upload_id)
    with lock:
        with db() as conn:
            c = conn.cursor()
            up = c.execute("SELECT filename, total_chunks FROM uploads WHERE upload_androidid=?", (req.upload_id,)).fetchone()
            if not up:
                raise HTTPException(404, "upload_id 不存在")
            filename, total = up

            # 校验分片是否齐全
            rows = c.execute("SELECT idx FROM chunks WHERE upload_id=? ORDER BY idx", (req.upload_id,)).fetchall()
            uploaded = [r[0] for r in rows]
            if len(uploaded) != total or uploaded != list(range(1, total + 1)):
                raise HTTPException(400, f"分片不完整,已上传:{uploaded},应为 1..{total}")

        root = ensure_upload_folders(req.upload_id)
        final_path = root / "final" / filename
        # 合并
        with open(final_path, "wb") as dst:
            for i in range(1, total + 1):
                chunk_path = root / "chunks" / f"{i}.part"
                with open(chunk_path, "rb") as src:
                    dst.write(src.read())

        # 可选:合并后哈希校验
        if req.expected_hash:
            with open(final_path, "rb") as f:
                data = f.read()
            calc = md5_of_bytes(data) if len(req.expected_hash) == 32 else sha256_of_bytes(data)
            if calc != req.expected_hash:
                raise HTTPException(400, "合并后文件校验失败")

        # 也可以在此处清理分片文件,或异步清理
        return JSONResponse({"message": "merged", "final_path": str(final_path)})
        
# ---------- 启动 ----------
if __name__ == "__main__":
    init_db()
    uvicorn.run(app, host="0.0.0.0", port=8000)

启动:python server.py,访问 http://localhost:8000/docs 可用 Swagger 调试。

三、Python 客户端脚本(支持断点续传与失败重试)

3.1 客户端依赖

pip install requests tqdm

3.2 client.py(可直接运行)

# client.py
import math
import os
import time
import hashlib
import requests
from pathlib import Path
from tqdm import tqdm

SERVER = "http://localhost:8000"

def sha256_of_file(path: Path) -> str:
    h = hashlib.sha256()
    with open(path, "rb") as f:
        for chunk in iter(lambda: f.read(1024 * 1024), b""):
            h.update(chunk)
    return h.hexdigest()

def md5_of_bytes(b: bytes) -> str:
    import hashlib
    h = hashlib.md5()
    h.update(b)
    return h.hexdigest()

def upload_file(path: str, chunk_size: int = 5 * 1024 * 1024, use_md5_for_chunk=False, retries=3, sleep=1):
    p = Path(path)
    size = p.stat().st_size
    file_hash = sha256_of_file(p)  # 也可改为 MD5
    total_chunks = math.ceil(size / chunk_size)

    # 1) init
    r = requests.post(f"{SERVER}/upload/init", json={
        "filename": p.name,
        "size": size,
        "chunk_size": chunk_size,
        "file_hash": file_hash
    })
    r.raise_for_status()
    j = r.json()
    upload_id = j["upload_id"]
    total_chunks = j["total_chunks"]
    print("upload_id:", upload_id, "total_chunks:", total_chunks)

    # 2) 查询已上传
    def get_status():
        rr = requests.get(f"{SERVER}/upload/status", params={"upload_id": upload_id})
        rr.raise_for_status()
        return rr.json()["uploaded"]

    uploaded = set(get_status())

    # 3) 逐片上传(可按需并发)
    with open(p, "rb") as f:
        for index in tqdm(range(1, total_chunks + 1), desc="Uploading"):
            if index in uploaded:
                continue
            start = (index - 1) * chunk_size
            end = min(size, index * chunk_size)
            f.seek(start)
            data = f.read(end - start)

            content_hash = md5_of_bytes(data) if use_md5_for_chunk else None
            for attempt in range(retries):
                try:
                    files = {"file": (f"{index}.part", data, "application/octet-stream")}
                    params = {"upload_id": upload_id, "index": index}
                    if content_hash:
                        params["content_hash"] = content_hash
                    rr = requests.post(f"{SERVER}/upload/chunk", files=files, params=params, timeout=30)
                    rr.raise_for_status()
                    break
                except Exception as e:
                    print(f"[{index}] retry {attempt+1}/{retries} because {e}")
                    time.sleep(sleep)
            else:
                raise RuntimeError(f"upload chunk {index} failed after retries")

    # 4) 合并
    r = requests.post(f"{SERVER}/upload/merge", json={
        "upload_id": upload_id,
        "expected_hash": file_hash  # 合并后校验整文件
    })
    r.raise_for_status()
    print("merge result:", r.json())

if __name__ == "__main__":
    # 示例:python client.py
    upload_file("bigfile.bin", chunk_size=5 * 1024 * 1024, use_md5_for_chunk=True)

说明:

  • 默认对整文件计算 SHA256,分片使用 MD5(use_md5_for_chunk=True)进行轻量校验。
  • 可按需改为并发上传(例如 concurrent.futures.ThreadPoolExecutor),但要关注带宽/并发上限与服务端限流策略。

四、断点续传原理与实现要点

  1. 唯一标识:upload_id 由 (filename, size, chunk_size, file_hash) 派生,确保同一文件同配置产生稳定 ID。
  2. 状态存储:用 SQLite 记录 uploads 与 chunks,服务重启后仍可恢复。
  3. 状态查询:/upload/status 返回已上传分片列表,客户端跳过已完成分片,直接续传剩余分片。
  4. 合并锁:为避免并发重复合并,对 upload_id 加进程内锁。
  5. 数据校验:
  6. 分片级:content_hash(MD5/SHA256)保障每块完整。
  7. 整体级:expected_hash 合并后校验整文件。
  8. 失败重试:客户端对分片上传进行有限次重试,并可按需指数回退。
  9. 清理策略:合并成功后可异步清理分片文件,释放磁盘。

五、前端思路(可选)

Web 前端(浏览器)常用 Blob.slice 分片 + fetch/XMLHttpRequest 上传。示例片段:

async function upload(file) {
  const chunkSize = 5 * 1024 * 1024;
  const totalChunks = Math.ceil(file.size / chunkSize);

  // 1) init
  const initResp = await fetch('/upload/init', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json'},
    body: JSON.stringify({ filename: file.name, size: file.size, chunk_size: chunkSize })
  }).then(r => r.json());
  const { upload_id } = initResp;

  // 2) 查询已上传
  const status = await fetch(`/upload/status?upload_id=${upload_id}`).then(r => r.json());
  const uploaded = new Set(status.uploaded);

  // 3) 顺序或并发上传
  for (let i = 1; i <= totalChunks; i++) {
    if (uploaded.has(i)) continue;
    const start = (i - 1) * chunkSize;
    const end = Math.min(file.size, i * chunkSize);
    const blob = file.slice(start, end);
    const form = new FormData();
    form.append('file', blob, `${i}.part`);

    await fetch(`/upload/chunk?upload_id=${upload_id}&index=${i}`, { method: 'POST', body: form });
  }

  // 4) merge
  await fetch('/upload/merge', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json'},
    body: JSON.stringify({ upload_id })
  });
}

生产环境可加入:并发上传、进度条展示、速度/剩余时间估算、取消/暂停/继续、切片校验、错误处理等。

六、接入对象存储(MinIO/S3)思路

  • 直传对象存储:客户端直传对象存储(预签名 URL),服务端仅做 init/status/merge 与校验,减少后端带宽占用。
  • 后端合并:分片先上传至桶的 /{upload_id}/chunks/{index}.part,合并阶段服务端从对象存储流式读出到最终对象。
  • S3 多段上传(Multipart Upload):直接使用 S3 的 Multipart API,可绕过本地分片落盘,提升性能与可靠性。

示例(仅演示方向,未接入到上面代码):

# pip install minio
from minio import Minio

client = Minio("127.0.0.1:9000", Access_key="minioadmin", secret_key="minioadmin", secure=False)

# 1) 为每个分片生成预签名 PUT URL,前端直接 PUT 到 MinIO
url = client.presigned_put_object("my-bucket", f"{upload_id}/chunks/{index}.part", expires=timedelta(hours=1))

# 2) 合并阶段:服务端从 MinIO 流式读取所有分片,写入最终对象

七、常见问题

Q1:为什么 index 从 1 开始? A:便于人类理解与日志排查,同时避免 0 与未设置的歧义。

Q2:如何并发上传? A:客户端开启多个线程协程并发上传,但注意限流、连接上限、后端写盘压力。通常 3~8 并发较稳妥。

Q3:如何“秒传”? A:在 /upload/init 前,客户端先计算整文件 hash(如 SHA256),服务端判断是否已有该文件,若存在则直接返回完成态。

Q4:如何避免“同名不同内容”冲突? A:upload_id 的推导包含 size/chunk_size/file_hash,同名文件内容不同会产生不同 upload_id,可兼容。

Q5:如何防止恶意超大文件或分片风暴? A:加入鉴权、白名单、配额、单 IP 并发限制、请求速率限制、最大分片大小及总大小限制。

八、总结

本文给出 Python(FastAPI)实现的大文件分片上传与断点续传的 可运行模板,同时提供了 客户端脚本前端思路。在生产环境,建议叠加:

  • 鉴权与签名(Token/AK/SK)
  • 请求限流与并发控制
  • 存储与计算解耦(对象存储直传/多段上传)
  • 完整的监控告警与清理策略
  • 更完备的异常恢复与审计日志

你可以以此为基线,快速扩展到 MinIO/S3 等对象存储,并对接你现有的网关与权限体系。

以上就是Python使用FastAPI实现大文件分片上传与断点续传功能的详细内容,更多关于Python FastAPI分片上传与断点续传的资料请关注China编程(www.chinasem.cn)其它相关文章!

这篇关于Python使用FastAPI实现大文件分片上传与断点续传功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155924

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置