AI绘画训练一个扩散模型-上集

2023-12-25 06:44

本文主要是介绍AI绘画训练一个扩散模型-上集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

AI绘画,其中最常见方案基于扩散模型,Stable Diffusion 在此基础上,增加了 VAE 模块和 CLIP 模块,本文搞了一个测试Demo,分为上下两集,第一集是denoising_diffusion_pytorch ,第二集是diffusers。
对于专业的算法同学而言,我更推荐使用 diffusers 来训练。原因是 diffusers 工具包在实际的 AI 绘画项目中用得更多,并且也更易于我们修改代码逻辑,实现定制化功能。
https://arxiv.org/abs/2112.10752

基础模块

  • 创建UNet模型和高斯扩散模型(Gaussian Diffusion)。

UNet是一个编码器-解码器结构的全卷积神经网络。Gaussian Diffusion用于定义噪声过程和损失函数。

  • 将模型加载到GPU上(如果有GPU)。

  • 使用随机初始化的图片进行一次训练,计算损失并反向传播。

这一步的目的是对模型进行一次预热,更新权重。

  • 使用diffusion模型采样生成图片。

这里采样1000步,也就是将噪声逐步减少,每步用UNet预测下一步的图像,最终输出生成的图片。

  • 如果图片在GPU上,将其移回到CPU。

  • 可视化第一张生成图片。

plt.imshow显示图片。

这样通过DDPM框架,可以从随机噪声生成符合数据分布的新图片。每次训练会使模型逐步逼近真实数据分布,从而产生更高质量的图片。

# 创建UNet和扩散模型from denoising_diffusion_pytorch import Unet, GaussianDiffusion
import torchmodel = Unet(dim = 64,dim_mults = (1, 2, 4, 8)
).cuda()diffusion = GaussianDiffusion(model,image_size = 128,timesteps = 1000   # number of steps
).cuda()# 使用随机初始化的图片进行一次训练
training_images = torch.randn(8, 3, 128, 128)
loss = diffusion(training_images.cuda())
loss.backward()# 采样1000步生成一张图片
sampled_images = diffusion.sample(batch_size = 4)
import torch
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
import torchvision.transforms as transforms# 如果张量在 GPU上,需要移动到 CPU上
if sampled_images.is_cuda:sampled_images = sampled_images.cpu()# 检查我们生成的一张图
img = sampled_images[0].clone().detach().permute(1, 2, 0)plt.imshow(img)

数据集

  • 导入所需的库:PIL、io、datasets等。

  • 使用datasets库中的load_dataset方法加载Oxford Flowers数据集。

  • 创建一个目录来保存图片。

  • 遍历数据集的训练、验证、测试split,逐个图像获取图片bytes数据,并保存为PNG格式图片。

  • 使用PIL库的Image对象将bytes数据加载并保存为图片文件。

  • 使用tqdm显示循环进度。

# 数据集下载
from PIL import Image
from io import BytesIO
from datasets import load_dataset
import os
from tqdm import tqdmdataset = load_dataset("nelorth/oxford-flowers")# 创建一个用于保存图片的文件夹
images_dir = "./oxford-datasets/raw-images"
os.makedirs(images_dir, exist_ok=True)# 遍历所有图片并保存,针对oxford-flowers,整个过程要持续15分钟左右
for split in dataset.keys():for index, item in enumerate(tqdm(dataset[split])):image = item['image']image.save(os.path.join(images_dir, f"{split}_image_{index}.png"))

模型训练

  • 定义Unet模型架构和Gaussian Diffusion过程。

  • 加载数据,指定训练参数:

    • 训练总步数20000
    • batch size 16
    • 学习率2e-5
    • 梯度累积步数2
    • EMA指数衰减参数0.995
    • 使用混合精度训练
    • 每2000步保存一次模型
    • 创建Trainer进行模型训练。Trainer封装了训练循环逻辑。
  • 调用trainer.train()进行训练。

# 模型训练
import torch
from denoising_diffusion_pytorch import Unet, GaussianDiffusion, Trainermodel = Unet(dim = 64,dim_mults = (1, 2, 4, 8)
).cuda()diffusion = GaussianDiffusion(model,image_size = 128,timesteps = 1000   # 加噪总步数
).cuda()trainer = Trainer(diffusion,'./oxford-datasets/raw-images',train_batch_size = 16,train_lr = 2e-5,train_num_steps = 20000,          # 总共训练20000步gradient_accumulate_every = 2,    # 梯度累积步数ema_decay = 0.995,                # 指数滑动平均decay参数amp = True,                       # 使用混合精度训练加速calculate_fid = False,            # 我们关闭FID评测指标计算(比较耗时)。FID用于评测生成质量。save_and_sample_every = 2000      # 每隔2000步保存一次模型
)trainer.train()
# 你可以等待上面的模型训练完成后,查看生成结果from glob import globresult_images = glob(r"./results/*.png")
print(result_images)
# 可视化图像看看
from PIL import Imageimg = Image.open("./results/sample-1.png")
img

测试

https://colab.research.google.com/github/NightWalker888/ai_painting_journey/blob/main/lesson12/train_diffusion_v2.ipynb#scrollTo=8BVjfBPI93Ar

这篇关于AI绘画训练一个扩散模型-上集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534568

相关文章

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应