本文主要是介绍Spring AI 实现 STDIO和SSE MCP Server的过程详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景...
Spring AI 实现 STDIO和SSE MCP Server
Java MCP 三层架构中,传输的方式有STDIO和SSE两种,如下图所示。
STDIO方式是基于进程间通信,MCP Client和MCP Server运行在同一主机,主要用于本地集成、命令行工具等场景。
SSE方式是基于HTTP协议,MCP Client远程调用MCP Server提供的SSE服务。实现客户端和服务端远程通信。
SSE Server
spring-ai-starter-mcp-server-webflux
基于WebFlux SSE 实现SSE Server。
<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-server-webflux</artifactId> </dependency>
MCP 服务端功能支持基于 Spring WebFlux 的 SSE(服务器发送事件)服务器传输和可选的 STDIO 传输。
1.新建Spring Boot项目
使用https://start.spring.io/新建项目,引入以下依赖。
<?XML version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.4.4</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.mcp.example</groupId> <artifactId>mcp-webflux-server-example</artifactId> <version>0.0.1-SNAPSHOT</version> <name>mcp-webflux-server-example</name> <description>mcp-webflux-server-example</description> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>1.0.0-SNAPSHOT</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-server-webflux</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> <repositories> <repository> <name>Central Portal Snapshots</name> <id>central-portal-snapshots</id> <url>https://central.sonatype.com/repository/maven-snapshots/</url> <releases> <enabled>false</enabled> </releases> <snapshots> <enabled>true</enabled> </snapshots> </repository> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> <repository> <id>spring-snapshots</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <releases> <enabled>false</enabled> </releases> </repository> </repositories> </project>
2.application.yaml配置
spring: ai: mcp: server: name: webflux-mcp-server version: 1.0.0 type: ASYNC # Recommended for reactive applications sse-message-endpoint: /mcp/messages
定义MCP名称和版本号以及同步或异步配置。
3.定义工具类
@Service public class DateTimeService { @Tool(description = "Get the current date and time in the user's timezone") String getCurrentDateTime() { return LocalDateTime.now().atZone(LocaleContextHolder.getTimeZone().toZoneId()).toString(); } @Tool(description = "Set a user alarm for the given time, provided in ISO-8601 format") String setAlarm(String time) { LocalDateTime alarmTime = LocalDateTime.parse(time, DateTimeFormatter.ISO_DATE_TIME); php return "Alarm set for " + alarmTime; } }
定义二个工具:
1.获取当前日期和时间
2.设置提醒功能
4.暴露工具
@Configuration public class McpWebFluxServiceExampleConfig { @Bean public ToolCallbackProvider dateTimeTools(DateTimeService dateTimeService) { return MethodToolCallbackProvider.builder().toolObjects(dateTimeService).build(); } }
5.启动MCP Server项目
启动项目发现注册的两个工具成功,可以端可以发现两个工具。到此MCP Server服务完成,SSE的端点路径:http://localhost:9090
,接下来是客户端连接使用服务端提供的工具。
6.MCP Client连接MCP Server
1.新建Spring Boot项目,然后引入starter
<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-client</artifactId> </dependency>
完整pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" python xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.4.4</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.mcp.example</groupId> <artifactId>mcp-client-example</artifactId> <version>0.0.1-SNAPSHOT</version> <name>mcp-client-example</name> <description>mcp-client-example</description> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>1.0.0-SNAPSHOT</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> <version>1.0.0-SNAPSHOT</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-client</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> <repositories> <repository> <name>Central Portal Snapshots</name> <id>central-portal-snapshots</id> <url>https://central.sonatype.com/repository/maven-snapshots/</url> <releases> <enabled>false</enabled> </releases> <snapshots> <enabled>true</enabled> </snapshots> </repository> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> <repository> <id>spring-snapshots</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <releases> <enabled>false</enabled> </releases> </repository> </repositories> </project>
2.配置
spring: ai: openai: api-key: 你自己密钥 base-url: https://api.siliconflow.cn chat: options: model: Qwen/Qwen2.5-72B-Instruct mcp: client: sse: connections: server1: url: http://localhost:9090 toolcallback: enabled: true server: port: 9091
配置文件内容,大模型配置方便测试工具使用,mcp服务端设置就是mcp server提供的sse端点。
toolcalback.enable=true 自动注入Spring AI ToolCallbackProvider。
3.测试
package com.mcp.example.mcpclientexample; import io.modelcontextprotocol.client.McpAsyChina编程ncClient; import jakarta.annotation.Resource; import org.springframework.ai.chat.client.ChatClient; import org.springframework.ai.mcp.SyncMcpToolCallbackProvider; import org.springframework.ai.tool.ToolCallback; import org.springframework.ai.tool.ToolCallbackProvider; import ojavascriptrg.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.CommandLineRunner; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import java.util.Arrays; import java.util.List; @SpringBootApplication public class McpClientExampleApplication implements CommandLineRunner { @Resource private ToolCallbackProvider tools; @Resource ChatClient.Builder chatClientBuilder; public static void main(String[] args) { SpringApplication.run(McpClientExampleApplication.class, args); } @Override public void run(String... args) throws Exception { var chatClient = chatClientBuilder .defaultTools(tools) .build(); String content = chatClient.prompt("10分钟后,设置一个闹铃。").call().content(); System.out.println(content); String content1 = chatClient.prompt("明天星期几?").call().content(); System.out.println(content1); } }
运行客户端项目:
结果表明定义的工具大模型根据用户的提问,选择了合适的工具进行回答。
STDIO Server
标准 MCP 服务器,通过 STDIO 服务器传输支持完整的 MCP 服务器功能。
<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-server</artifactId> </dependency>
1.创建Server项目
新建Spring Boot项目引入以下依赖
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.4.4</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.mcp.example</groupId> <artifactId>mcp-stdio-server-example</artifactId> <version>0.0.1-SNAPSHOT</version> <name>mcp-stdio-server-example</name> <description>mcp-stdio-server-example</description> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>1.0.0-SNAPSHOT</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-server</artifactId> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> <repositories> <repository> <name>Central Portal Snapshots</name> <id>central-portal-snapshots</id> <url>https://central.sonatype.com/repository/maven-snapshots/</url> <releases> <enabled>false</enabled> </releases> <snapshots> <enabled>true</enabled> </snapshots> </repository> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> <repository> <id>spring-snapshots</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <releases> <enabled>false</enabled> </releases> </repository> </repositories> </project>
配置文件application.yaml
spring: ai: mcp: server: name: stdio-mcp-server version: 1.0.0 stdio: true main: banner-mode: off web-application-type: none logging: pattern: console: server: port: 9090
main:
banner-mode: off
web-application-type: none 这个配置非常关键,否则client与server通信会提示json解析有问题。这个必须关掉。
2.新建工具
与sse server一样,新建DateTimeTool并注册。
3.打包项目
STDIO方式server和client之间是进程间通信,所以需要把server打包成jar,以便client命令启动执行,或者三方客户端命令启动执行。将server jar放到一个指定目录,如下所示:
target/mcp-stdio-server-example.jar
4.创建client项目
直接使用上面sse server使用的 Clinet,修改对应配置文件application.yaml
和新建mcp-server配置json。mcp-servers-config.json
。
{ "mcpServers": { "stdio-mcp-server": { "command": "java", "args": [ "-Dspring.ai.mcp.server.stdio=true", "-Dspring.main.web-application-type=none", "-jar", "mcp server正确的路径 ../mcp-stdio-server-example-0.0.1-SNAPSHOT.jar" ], "env": {} } } }
application.yaml
spring: ai: openai: api-key: sk-qwkegvacbfpsctyhfgakxlwfnklinwjunjyfmonnxddmcixr javascript base-url: https://api.siliconflow.cn chat: options: model: Qwen/Qwen2.5-72B-Instruct mcp: client: # sse: # connections: # server1: # url: http://localhost:9090 stdio: root-change-notification: false servers-configuration: classpath:/mcp-servers-config.json toolcallback: enabled: true server: port: 9091
5.启动客户端
到此这篇关于Spring AI 实现 STDIO和SSE MCP Server的过程详解的文章就介绍到这了,更多相关Spring AI STDIO和SSE MCP Server内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!
这篇关于Spring AI 实现 STDIO和SSE MCP Server的过程详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!