Spring AI与DeepSeek实战一之快速打造智能对话应用

2025-03-06 17:50

本文主要是介绍Spring AI与DeepSeek实战一之快速打造智能对话应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭...

一、概述

在 AI 技术蓬勃发展的今天,国产大模型 DeepSeek 凭借其 低成本高性能 的特点,成为企业智能化转型的热门选择。而 Spring AI 作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用编程各类 AI 服务。本文将手把手教你通过 spring-ai 集成 DeepSeek 接口实现普通对话与流式对话功能,助力你的 Java 应用轻松接入 AI 能力!

二、申请DeepSeek的API-KEY

相较于直接调用 DeepSeek 官方的 API,阿里云百炼基于阿里云强大的云计算基础设施,提供了高可用性和稳定性的服务,并且支持程序运行时动态切换 模型广场 中的任意大模型。

Spring AI与DeepSeek实战一之快速打造智能对话应用

登录阿里云,进入 阿里云百炼 的页面:

https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY

Spring AI与DeepSeek实战一之快速打造智能对话应用

三、项目搭建

3.1. 开发环境要求

  • JDK 17+
  • Spring Boot 3.2.x及以上

3.2. maven配置

Spring Boot 项目的 pom.XML 中添加 spring-ai 依赖

<dependency>
    <groupId>com.alibaba.cloud.ai</groupId>
    <artifactId>spring-ai-alibaba-starter</artifactId>
</dependency>

增加仓库的配置

<repositories>
    <repository>
        <id>alimaven</id>
        <url>https://maven.aliyun.com/repository/public</url>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <url>https://repo.spring.io/snapshot</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

3.3. 配置 API-KEY

application.yml 中添加以下配置:

spring:
  ai:
    dashscope:
      api-key: sk-xxxxxx

api-key 配置在阿里云百炼里申请的api-key 3.4. 创建ChatClient对象

private final ChatClient chatClient;
public ChatController(ChatClient.Builder builder) {
    String sysPrompt = """
        你是一个博学的智能聊天助手,请根据用户提问回答。
        请讲中文。
        今天的日期是 {current_date}。
        """;
    this.chatClient = builder
            .defaultSystem(sysPrompt)
            .defaultOptions(
                    DashScopeChatOptions.builder()
                            /**
                             * 值范围:[0, 2),系统默认值0.85。不建议取值为0,无意义
                             */
                    编程        .withTemperature(1.3)
                            .withModel("deepseek-v3")
                            .build()
            )
            .build();
}
  • defaultSystem 指定系统 prompt 来约束大模型的行为或者提供一些上下文信息,如这里告诉大模型今天的日期是多少,支持占位符python
  • defaultOptions 配置模型的参数
    • withTemperature 用于控制随机性和多样性的程度,值越高大模型回复的内容越丰富越天马行空
    • withModel 配置模型广场中的模型名称,这里填写 deepseek-v3

模型广场的模型名称清单:https://help.aliyun.com/zh/model-studio/getting-started/models

3.5. 创建对话接口

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, HttpServletResponse reChina编程sponse) {
    // 设置字符编码,避免乱码
    response.setCharacterEncoding("UTF-8");
    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

每次调用接口时,通过 system 来给 current_date 占位符动态赋值。

调用示例

问身份

Spring AI与DeepSeek实战一之快速打造智能对话应用

问日期

Spring AI与DeepSeek实战一之快速打造智能对话应用

3.6. 切换模型

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, @RequestParam(required = false) String model, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    if (StrUtil.isEmpty(model)) {
        model = "deepseek-v3";
    }
    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .options(DashScopeChatOptions.builder().withModel(model).build())
            .call()
            .content();
}

使用 withModel 来配置模型名称

调用示例

切换deepseek-r1模型

Spring AI与DeepSeek实战一之快速打造智能对话应用

切换通义千问模型

Spring AI与DeepSeek实战一之快速打造智能对话应用

3.7. 使用prompt模板

通过 PromptTemplate 可以编辑复杂的提示词,并且也支持占位符

@GetMapping(value = "/chatTemp")
public String chatTemp(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));
    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

这里提出让 deepseek-v3 进行逐步拆分思考,并把思考过程返回。

调用示例

Spring AI与DeepSeek实战一之快速打造智能对话应用

可以看到大模型会拆分多步来进行推论结果。

3.8. 使用流式对话

当前接口需等待大模型完全生成回复内容才能返回,这用户体验并不好。为实现类似 ChatGPT 的逐句实时输出效果,可采用流式传输技术(Streaming Response)。

@GetMapping(value = "/streamChat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<String> streamChat(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));
    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .stream()
            .content()
            .concatWith(Flux.just("[DONE]"))
            .onErrorResume(e -> Flux.just("ERROR: " + e.getMessage(), "[DONE]"));
}
  • 调用时把 call() 改成 stream()
  • 并且遵循SSE协议最后发送[DONE]终止标识

调用示例

Spring AI与DeepSeek实战一之快速打造智能对话应用

  • data: xxx 这种是 Server-Sent Events 的格式要求;
  • 需要前端搭配 EventSource 或 WebSocket 等方式来接收流式数据,并结合 marked.js 来正确显示 markdown 语法。

四、总结

虽然通过 Spring AI 能够快速完成 DeepSeek 大模型与 Spring Boot 项目的对接,实现基础的对话接口开发,但这仅是智能化转型的初级阶段。要将大模型能力真正落地为生产级应用,还是需实现以下技术:

  • 能力扩展层:通过 智能体 实现意图理解与任务调度,结合 FunctionCall 实现结构化数据交互,实现AI与业务系统的无缝对接;
  • 知识增强层:应用 RAG(检索增强生成)技术构建领域知识库,解决大模型幻觉问题,支撑专业场景的精准问答
  • 流程编排层:设计 Agent 工作流实现复杂业务逻辑拆解,支持多步骤推理与自动化决策;
  • 模型优化:基于业务数据实施模型微调 Fine-tuning 提升垂直场景的响应质量和可控性。

五、完整代码

Gitee地址:

https://gitee.http://www.chinasem.cncom/zlt2000/zlt-spring-ai-app

github地址:

https://github.com/zlt2000/zlt-spring-ai-app

到此这篇关于Spring AI与DeepSeek实战一:快速打造智能对话应用的文章就介绍到这了,更多相关Spring AI DeepSeek智能对话内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Spring AI与DeepSeek实战一之快速打造智能对话应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153656

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。