Spring AI与DeepSeek实战一之快速打造智能对话应用

2025-03-06 17:50

本文主要是介绍Spring AI与DeepSeek实战一之快速打造智能对话应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭...

一、概述

在 AI 技术蓬勃发展的今天,国产大模型 DeepSeek 凭借其 低成本高性能 的特点,成为企业智能化转型的热门选择。而 Spring AI 作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用编程各类 AI 服务。本文将手把手教你通过 spring-ai 集成 DeepSeek 接口实现普通对话与流式对话功能,助力你的 Java 应用轻松接入 AI 能力!

二、申请DeepSeek的API-KEY

相较于直接调用 DeepSeek 官方的 API,阿里云百炼基于阿里云强大的云计算基础设施,提供了高可用性和稳定性的服务,并且支持程序运行时动态切换 模型广场 中的任意大模型。

Spring AI与DeepSeek实战一之快速打造智能对话应用

登录阿里云,进入 阿里云百炼 的页面:

https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY

Spring AI与DeepSeek实战一之快速打造智能对话应用

三、项目搭建

3.1. 开发环境要求

  • JDK 17+
  • Spring Boot 3.2.x及以上

3.2. maven配置

Spring Boot 项目的 pom.XML 中添加 spring-ai 依赖

<dependency>
    <groupId>com.alibaba.cloud.ai</groupId>
    <artifactId>spring-ai-alibaba-starter</artifactId>
</dependency>

增加仓库的配置

<repositories>
    <repository>
        <id>alimaven</id>
        <url>https://maven.aliyun.com/repository/public</url>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <url>https://repo.spring.io/snapshot</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

3.3. 配置 API-KEY

application.yml 中添加以下配置:

spring:
  ai:
    dashscope:
      api-key: sk-xxxxxx

api-key 配置在阿里云百炼里申请的api-key 3.4. 创建ChatClient对象

private final ChatClient chatClient;
public ChatController(ChatClient.Builder builder) {
    String sysPrompt = """
        你是一个博学的智能聊天助手,请根据用户提问回答。
        请讲中文。
        今天的日期是 {current_date}。
        """;
    this.chatClient = builder
            .defaultSystem(sysPrompt)
            .defaultOptions(
                    DashScopeChatOptions.builder()
                            /**
                             * 值范围:[0, 2),系统默认值0.85。不建议取值为0,无意义
                             */
                    编程        .withTemperature(1.3)
                            .withModel("deepseek-v3")
                            .build()
            )
            .build();
}
  • defaultSystem 指定系统 prompt 来约束大模型的行为或者提供一些上下文信息,如这里告诉大模型今天的日期是多少,支持占位符python
  • defaultOptions 配置模型的参数
    • withTemperature 用于控制随机性和多样性的程度,值越高大模型回复的内容越丰富越天马行空
    • withModel 配置模型广场中的模型名称,这里填写 deepseek-v3

模型广场的模型名称清单:https://help.aliyun.com/zh/model-studio/getting-started/models

3.5. 创建对话接口

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, HttpServletResponse reChina编程sponse) {
    // 设置字符编码,避免乱码
    response.setCharacterEncoding("UTF-8");
    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

每次调用接口时,通过 system 来给 current_date 占位符动态赋值。

调用示例

问身份

Spring AI与DeepSeek实战一之快速打造智能对话应用

问日期

Spring AI与DeepSeek实战一之快速打造智能对话应用

3.6. 切换模型

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, @RequestParam(required = false) String model, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    if (StrUtil.isEmpty(model)) {
        model = "deepseek-v3";
    }
    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .options(DashScopeChatOptions.builder().withModel(model).build())
            .call()
            .content();
}

使用 withModel 来配置模型名称

调用示例

切换deepseek-r1模型

Spring AI与DeepSeek实战一之快速打造智能对话应用

切换通义千问模型

Spring AI与DeepSeek实战一之快速打造智能对话应用

3.7. 使用prompt模板

通过 PromptTemplate 可以编辑复杂的提示词,并且也支持占位符

@GetMapping(value = "/chatTemp")
public String chatTemp(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));
    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

这里提出让 deepseek-v3 进行逐步拆分思考,并把思考过程返回。

调用示例

Spring AI与DeepSeek实战一之快速打造智能对话应用

可以看到大模型会拆分多步来进行推论结果。

3.8. 使用流式对话

当前接口需等待大模型完全生成回复内容才能返回,这用户体验并不好。为实现类似 ChatGPT 的逐句实时输出效果,可采用流式传输技术(Streaming Response)。

@GetMapping(value = "/streamChat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<String> streamChat(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));
    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .stream()
            .content()
            .concatWith(Flux.just("[DONE]"))
            .onErrorResume(e -> Flux.just("ERROR: " + e.getMessage(), "[DONE]"));
}
  • 调用时把 call() 改成 stream()
  • 并且遵循SSE协议最后发送[DONE]终止标识

调用示例

Spring AI与DeepSeek实战一之快速打造智能对话应用

  • data: xxx 这种是 Server-Sent Events 的格式要求;
  • 需要前端搭配 EventSource 或 WebSocket 等方式来接收流式数据,并结合 marked.js 来正确显示 markdown 语法。

四、总结

虽然通过 Spring AI 能够快速完成 DeepSeek 大模型与 Spring Boot 项目的对接,实现基础的对话接口开发,但这仅是智能化转型的初级阶段。要将大模型能力真正落地为生产级应用,还是需实现以下技术:

  • 能力扩展层:通过 智能体 实现意图理解与任务调度,结合 FunctionCall 实现结构化数据交互,实现AI与业务系统的无缝对接;
  • 知识增强层:应用 RAG(检索增强生成)技术构建领域知识库,解决大模型幻觉问题,支撑专业场景的精准问答
  • 流程编排层:设计 Agent 工作流实现复杂业务逻辑拆解,支持多步骤推理与自动化决策;
  • 模型优化:基于业务数据实施模型微调 Fine-tuning 提升垂直场景的响应质量和可控性。

五、完整代码

Gitee地址:

https://gitee.http://www.chinasem.cncom/zlt2000/zlt-spring-ai-app

github地址:

https://github.com/zlt2000/zlt-spring-ai-app

到此这篇关于Spring AI与DeepSeek实战一:快速打造智能对话应用的文章就介绍到这了,更多相关Spring AI DeepSeek智能对话内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Spring AI与DeepSeek实战一之快速打造智能对话应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153656

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多