使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s

本文主要是介绍使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,演示视频

https://www.bilibili.com/video/BV1gu4y1c7KL/

使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s

2,关于A40显卡,48GB 显存,安培架构

2020年,英伟达发布 A40 专业显卡,配备 48GB 显存。

采用了 GA102 GPU,拥有 10752 个 CUDA 核心。而 A40 是用于服务器的。A40 都配备了四个 DP 1.4 接口,都搭载了 48GB 的 GDDR6 显存,最大带宽为 696 GB/s。显卡的功耗为 300W,采用了全新的 8 pin 接口。

环境使用:
CPU :15 核心
内存:80 GB
GPU :NVIDIA A40, 1个

3,关于 Yi-34B 模型

11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。

官方网站:
https://www.lingyiwanwu.com/

模型下载地址:
https://huggingface.co/01-ai/Yi-34B-Chat-8bits

github地址:
https://github.com/01-ai/Yi

下载后占空间:
68G Yi-34B-Chat-8bits

经测试:Yi-34B-Chat-4bits 没有启动成功,8bits启动成功了。
下模型文件花费时间比较多。

3,安装相关依赖,先安装最新的torch版本

apt update && apt install -y git-lfs net-tools
#
git clone https://www.modelscope.cn/01ai/Yi-34B-Chat-4bits.git# 1,安装 torch 模块,防止依赖多次下载
pip3 install torch==2.1.0# 2,安装 vllm 模块:
pip3 install vllm# 最后安装 
pip3 install "fschat[model_worker,webui]" auto-gptq optimum

安装完成之后就可以使用fastchat启动了。

4,使用 vllm 进行加速,可以加速 Yi-34B-Chat-4bits 模型

https://docs.vllm.ai/en/latest/getting_started/installation.html

官方网站:https://github.com/vllm-project/vllm

说明模型不支持这个 vllm ,需要切换成 Yi-34B-Chat-4bits 可以启动

ValueError: Unknown quantization method: gptq. Must be one of ['awq', 'squeezellm'].

增加参数:fastchat.serve.vllm_worker --quantization awq
就可以切换成 fastchat 的 vllm 模式:

# run_all_vllm_yi.sh# 清除全部 fastchat 服务
ps -ef | grep fastchat.serve | awk '{print$2}' | xargs kill -9
sleep 3rm -f *.log# 首先启动 controller :
nohup python3 -m fastchat.serve.controller --host 0.0.0.0 --port 21001 > controller.log 2>&1 &# 启动 openapi的 兼容服务 地址 8000
nohup python3 -m fastchat.serve.openai_api_server --controller-address http://127.0.0.1:21001 \--host 0.0.0.0 --port 8000 > api_server.log 2>&1 &# 启动 web ui
nohup python -m fastchat.serve.gradio_web_server --controller-address http://127.0.0.1:21001 \--host 0.0.0.0 --port 8000 > web_server.log 2>&1 &# 然后启动模型: 说明,必须是本地ip --load-8bit 本身已经是int4了
# nohup python3 -m fastchat.serve.model_worker  --model-names yi-34b \
#   --model-path ./Yi-34B-Chat-8bits --controller-address http://${IP_ADDR}:21001 \
#   --worker-address http://${IP_ADDR}:8080 --host 0.0.0.0 --port 8080 > model_worker.log 2>&1 &## 
nohup python3 -m fastchat.serve.vllm_worker --quantization awq --model-names yi-34b \--model-path ./Yi-34B-Chat-4bits --controller-address http://127.0.0.1:21001 \--worker-address http://127.0.0.1:8080 --host 0.0.0.0 --port 8080 > model_worker.log 2>&1 &

然后在测试下 token 效果:

python3 -m fastchat.serve.test_throughput --controller-address http://127.0.0.1:21001 --model-name yi-34b --n-thread 1throughput: 18.678158839922936 words/s.

5,总结

测试效果还可以,但是偶尔出现英文,需要说明强制转换成中文:

curl http://localhost:6006/v1/chat/completions   -H "Content-Type: application/json"   -d '{"model": "chatglm3-6b","messages": [{"role": "user", "content": "北京景点,使用中文回答"}],"temperature": 0.7}'

这篇关于使用autodl服务器,在A40显卡上运行, Yi-34B-Chat-int4模型,并使用vllm优化加速,显存占用42G,速度18 words/s的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466675

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.