讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛-三等奖方案

本文主要是介绍讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛-三等奖方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文公开了”讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛“赛道的技术方案,本次比赛主要采用pdf解析特征工程的方法,通过使用lightgbm的树模型10折交叉验证进行二分类的任务,最终取得三等奖的成绩。

一、赛题任务

简历智能化判断,需要大量的数据集作为支撑,同时简历的半结构化数据特点和多变的简历风格给简历智能化判断带来了挑战,本次大赛将提供脱敏的学生中文简历数据集(pdf或docx格式)作为训练样本,参赛选手需要基于提供的样本数据构建模型,预测简历是否符合简历投递基本要求。任务如下:

简历完整性检测。根据要求提取简历要素特征数据,并根据样本数据构建模型,预测简历是否符合简历投递基本要求,预测结果可分为两个类别:即完整(标签1)不完整(标签0)

二、数据和评价指标

数据:脱敏后的学生简历数据集(pdf或docx格式)。训练数据提供脱敏后的数据集,共800余份。测试集不可见,由真实简历数据组成,共100余份。训练集全部为pdf格式。

注:数据集分为正样本负样本,其中正样本为完整性简历数据集,符合简历投递基本要求;负样本为不完整简历数据集,不符合简历投递基本要求。

评价指标:F1 score

三、方案

3.1.方案概述

本次比赛主要采用pdf解析和特征工程的方法,通过使用lightgbm的树模型10折交叉验证进行二分类的任务。

3.2.pdf2text解析

本次比赛主要实验了以下几种解析工具,最终最高分选择了pymupdf

  • pdfplumber
  • PyPDF2
  • pymupdf

3.3.特征工程

主要文本特征如下:

  • 页数

  • pdf2text的文本长度

  • 按行切分后的平均长度

  • 按行切分后的最大长度

  • 按行切分后的长度标准差

  • text字符集合的大小

  • pdf2text的文本长度-text字符集合的大小

  • text字符集合的大小/(pdf2text的文本长度+1)

  • text空格切分后的列表大小

  • text换行符切分后的列表大小

  • -的数量

  • x的数量

  • xxx的数量

  • 数字的数量

  • @的数量

  • .com的数量

  • *的数量

  • :的数量

  • ****的数量

  • 正则匹配电话号码的数量

特征提取对应的code

pattern = r"[\D]+(1\d{10})+(?!\d)"def extract_feature_from_pdf(path):doc = fitz.open(path)all_content = []page_nums = 0for i in doc.pages():page_nums += 1all_content.append(i.get_text())text = ''.join(all_content)text = ''.join(text.split('\n'))feat = [page_nums,len(text),np.mean([len(x) for x in text.split('\n')]),np.max([len(x) for x in text.split('\n')]),np.std([len(x) for x in text.split('\n')]),len(set(text)),len(text) - len(set(text)),len(set(text)) / (len(text) + 1),len(text.split()),len(text.split('\n')),text.count('-'),text.count('x'),text.count('xxx'),sum([text.count(x) for x in '0123456789']),text.count('@'),text.count('.com'),text.count('*'),text.count(':'),text.count('****'),len(re.compile(pattern).findall(text)),1 if '正样本' in path else 0,]return feat

3.4.训练代码

本次比赛主要使用的是lightgbm的树模型,视为二分类任务,进行10折交叉验证的训练。

#!/usr/bin/env python
# _*_coding:utf-8_*_
# Author   :    Junhui Yuimport warningswarnings.simplefilter('ignore')import gcimport pandas as pdpd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 100)from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, classification_reportimport lightgbm as lgbimport globimport pandas as pd
from tqdm import tqdm
import numpy as np
import re
import fitzpattern = r"[\D]+(1\d{10})+(?!\d)"def extract_feature_from_pdf(path):doc = fitz.open(path)all_content = []page_nums = 0for i in doc.pages():page_nums += 1all_content.append(i.get_text())text = ''.join(all_content)text = ''.join(text.split('\n'))feat = [page_nums,len(text),np.mean([len(x) for x in text.split('\n')]),np.max([len(x) for x in text.split('\n')]),np.std([len(x) for x in text.split('\n')]),len(set(text)),len(text) - len(set(text)),len(set(text)) / (len(text) + 1),len(text.split()),len(text.split('\n')),text.count('-'),text.count('x'),text.count('xxx'),sum([text.count(x) for x in '0123456789']),text.count('@'),text.count('.com'),text.count('*'),text.count(':'),text.count('****'),len(re.compile(pattern).findall(text)),1 if '正样本' in path else 0,]return feattrain_paths = glob.glob('../xfdata/校招简历信息完整性检测训练集/*/*.pdf')df_train = pd.DataFrame(columns=['page_nums','text_len','text_len_mean','text_len_max','text_len_std','text_set_len','lentext-lenset','lenset_div_lentext','text_split_len','text_split_ent_len','-_nums','x_nums','xxx_nums','dig_sum','@_nums','.com_nums','*_nums',':_nums','****_nums','phone_nums','label'])for t_p in tqdm(train_paths):df_train.loc[len(df_train)] = extract_feature_from_pdf(t_p)not_use_feats = ['label']
use_features = [col for col in df_train.columns if col not in not_use_feats]
print(len(use_features))
train = df_train[df_train['label'].notna()]NUM_CLASSES = 2
FOLDS = 10
TARGET = 'label'def run_lgb(df_train, use_features):target = TARGEToof_pred = np.zeros((len(df_train), NUM_CLASSES))folds = StratifiedKFold(n_splits=FOLDS, shuffle=True, random_state=42)for fold, (tr_ind, val_ind) in enumerate(folds.split(train, train[TARGET])):print(f'Fold {fold + 1}')x_train, x_val = df_train[use_features].iloc[tr_ind], df_train[use_features].iloc[val_ind]y_train, y_val = df_train[target].iloc[tr_ind], df_train[target].iloc[val_ind]train_set = lgb.Dataset(x_train, y_train)val_set = lgb.Dataset(x_val, y_val)params = {'learning_rate': 0.1,'metric': 'multiclass','objective': 'multiclass','num_classes': NUM_CLASSES,'feature_fraction': 0.75,'bagging_fraction': 0.75,'bagging_freq': 2,'n_jobs': -1,'seed': 1029,'max_depth': 10,'num_leaves': 100,'lambda_l1': 0.5,'lambda_l2': 0.8,'verbose': -1}model = lgb.train(params,train_set,num_boost_round=500,early_stopping_rounds=100,valid_sets=[train_set, val_set],verbose_eval=100)oof_pred[val_ind] = model.predict(x_val)print('acc:', accuracy_score(np.argmax(oof_pred, axis=1), df_train['label']))del x_train, x_val, y_train, y_val, train_set, val_setgc.collect()return oof_pred, modeloof_pred, model = run_lgb(train, use_features)
print(classification_report(np.argmax(oof_pred, axis=1), df_train['label']))model.save_model('model.txt')

3.5.推理代码

#!/usr/bin/env python
# _*_coding:utf-8_*_
# Author   :    Junhui Yuimport globimport pandas as pd
import numpy as np
import re
import fitzimport lightgbm as lgbpatter = r"[\D]+(1\d{10})+(?!\d)"def extract_feature_from_pdf(path):doc = fitz.open(path)all_content = []page_nums = 0for i in doc.pages():page_nums += 1all_content.append(i.get_text())text = ''.join(all_content)text = ''.join(text.split('\n'))feat = [page_nums,len(text),np.mean([len(x) for x in text.split('\n')]),np.max([len(x) for x in text.split('\n')]),np.std([len(x) for x in text.split('\n')]),len(set(text)),len(text) - len(set(text)),len(set(text)) / (len(text) + 1),len(text.split()),len(text.split('\n')),text.count('-'),text.count('x'),text.count('xxx'),sum([text.count(x) for x in '0123456789']),text.count('@'),text.count('.com'),text.count('*'),text.count(':'),text.count('****'),len(re.compile(patter).findall(text)),1 if '正样本' in path else 0,]return featdf = pd.DataFrame(columns=['page_nums','text_len','text_len_mean','text_len_max','text_len_std','text_set_len','lentext-lenset','lenset_div_lentext','text_split_len','text_split_ent_len','-_nums','x_nums','xxx_nums','dig_sum','@_nums','.com_nums','*_nums',':_nums','****_nums','phone_nums','label'])test_paths = glob.glob('/work/data/integrity-check-of-resume-test-set/*.pdf')[:]for t_f in test_paths:df.loc[len(df)] = extract_feature_from_pdf(t_f)not_use_feats = ['label']
use_features = [col for col in df.columns if col not in not_use_feats]model = lgb.Booster(model_file='model.txt')y_pred = model.predict(df[use_features])predict_label = np.argmax(y_pred, axis=1)pd.DataFrame({'ResumeID': [x.split('/')[-1] for x in test_paths],'label': predict_label.astype(int)
}).to_csv('/work/output/result.csv', index=None)

3.6.特征重要度与f1-score

                feature  split       gain
16              *_nums     96  23.080862
15           .com_nums     68  15.428008
6       lentext-lenset    126  12.632440
7   lenset_div_lentext    222  10.997545
13             dig_sum    218   7.045122
1             text_len    110   4.449556
17              :_nums    179   4.178767
8       text_split_len    165   4.169549
10              -_nums    137   3.483447
5         text_set_len    184   3.018025
14              @_nums     13   2.870494
11              x_nums     94   2.141016
19          phone_nums     16   1.668496
18           ****_nums     12   1.608449
12            xxx_nums     24   1.249654
2        text_len_mean     31   1.066294
0            page_nums     31   0.803168
3         text_len_max      5   0.109109
9   text_split_ent_len      0   0.000000
4         text_len_std      0   0.000000precision    recall  f1-score   support0       0.75      0.84      0.79       1051       0.98      0.96      0.97       710accuracy                           0.94       815macro avg       0.86      0.90      0.88       815
weighted avg       0.95      0.94      0.94       815

四、延伸

本次比赛任务相对简单,如果真正做到应用级别还需要考虑更多维度综合对简历的完整性进行评价。比如:简历中核心字段的填充率、设计简历中核心字段的重要性权值等等多维度信息。涉及技术可能有基于实体识别的简历解析(从本文特征工程也可以看出)技术等。

结论

本文仅记录8月份参与该比赛思路,至于代码也很普通。该比赛任务由于比较简单,线下指标虚高,训练数据与线上评测数据较少(耐心做特征工程分数可以非常高),并且技术价值不高。因此,前前后后投入差不多一个小时左右时间速刷了一下,最后偶然获奖。

参考文献

【1】校招简历信息完整性检测挑战赛:https://challenge.xfyun.cn/topic/info?type=information-integrity&option=ssgy

这篇关于讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛-三等奖方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363918

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详