阿里云发布通义千问2.0,性能超GPT-3.5,加速追赶GPT-4

2023-11-01 05:20

本文主要是介绍阿里云发布通义千问2.0,性能超GPT-3.5,加速追赶GPT-4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

10月31日,阿里云正式发布千亿级参数大模型通义千问2.010个权威测评中,通义千问2.0综合性能超过GPT-3.5,正在加速追赶GPT-4。当天,通义千问APP在各大手机应用市场正式上线,所有人都可通过APP直接体验最新模型能力。

过去6个月,通义千问2.0在性能上取得巨大飞跃,相比4月发布的1.0版本,通义千问2.0复杂指令理解、文学创作、通用数学、知识记忆、幻觉抵御等能力上均有显著提升。目前,通义千问的综合性能已经超过GPT-3.5,加速追赶GPT-4。

图:通义千问2.0综合性能超过GPT-3.5,正在加速追赶GPT-4

在MMLU、C-Eval、GSM8K、HumanEval、MATH等10个主流Benchmark测评集上,通义千问2.0的得分整体超越Meta的Llama-2-70B,相比OpenAI的Chat-3.5是九胜一负,相比GPT-4则是四胜六负,与GPT-4的差距进一步缩小。

中英文理解能力是大语言模型的基本功。英语任务方面,通义千问2.0在MMLU基准的得分是82.5,仅次于GPT-4,通过大幅增加参数量,通义千问2.0能更好地理解和处理复杂的语言结构和概念;中文任务方面,通义千问2.0以明显优势在C-Eval基准获得最高得分,这是由于模型在训练中学习了更多中文语料,进一步强化了中文理解和表达能力。

在数学推理、代码理解等领域,通义千问2.0进步明显。在推理基准测试GSM8K中,通义千问排名第二,展示了强大的计算和逻辑推理能力;在HumanEval测试中,通义千问得分紧跟GPT-4和GPT-3.5,该测试主要衡量大模型理解和执行代码片段的能力,这一能力是大模型应用于编程辅助、自动代码修复等场景的基础。

图:通义千问2.0发布

通义千问更成熟了,也更好用了。通义千问2.0在指令遵循、工具使用、精细化创作等方面作了技术优化,能够更好地被下游应用场景集成。通义大模型官网上线了多模态和插件功能,支持图片输入、文档解析等细分任务。

与此同时,基于通义大模型训练的8大行业模型组团上线,他们分别是通义灵码-智能编码助手、通义智文-AI阅读助手、通义听悟-工作学习AI助手通义星尘-个性化角色创作平台通义点金-智能投研助手通义晓蜜-智能客服通义仁心-个人专属健康助手通义法睿-AI法律顾问8大行业模型面向当下最受欢迎的多个垂直场景,使用领域数据进行专门训练。用户可以在官网直接体验模型功能,开发者可以通过网页嵌入、API/SDK调用等方式,将模型能力集成到自己的大模型应用和服务中。

图:通义大模型家族全面升级,8大行业模型组团上线

截至10月,阿里云已与60多个行业头部伙伴进行深度合作,推动通义千问在办公、文旅、电力、政务、医保、交通、制造、金融、软件开发等领域的落地。

周靖人透露,阿里云计划近期开源通义千问72B版本,此前,阿里云已先后开源7B和14B版本模型,模型累计下载量超过100万。阿里云将持续支持千行百业的开发者基于通义千问开源模型进行模型和应用创新。

图:通义千问72B即将开源

这篇关于阿里云发布通义千问2.0,性能超GPT-3.5,加速追赶GPT-4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/320754

相关文章

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增