回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

本文主要是介绍回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

文章目录

  • 前言
    • 回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出
  • 一、NGO-Transformer-BiLSTM模型
      • 回归预测:NGO-Transformer-BiLSTM组合模型的数据预测
      • 1. NGO(北方苍鹰优化算法)
      • 2. Transformer
      • 3. BiLSTM(双向长短期记忆网络)
      • 4. 综合建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

一、NGO-Transformer-BiLSTM模型

回归预测:NGO-Transformer-BiLSTM组合模型的数据预测

NGO-Transformer-BiLSTM 模型结合了北方苍鹰优化算法(NGO)、Transformer架构和双向长短期记忆网络(BiLSTM)。这个组合用于处理具有复杂时序和多特征输入的数据预测任务。以下是详细的原理和流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数,提高预测性能。

原理

  • 模拟苍鹰的猎食行为来优化模型参数。
  • 包括初始化种群、评估适应度、选择和更新种群等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(预测误差)。
  3. 更新:通过猎食行为更新种群。
  4. 迭代:重复更新直到满足停止条件。

2. Transformer

目的:处理复杂的时序依赖关系,捕捉长期依赖。

原理

  • 通过自注意力机制(Self-Attention)对输入数据进行加权求和,捕捉序列中的重要信息。
  • 具有多个编码器和解码器层,能够处理复杂的特征和依赖关系。

流程

  1. 自注意力计算:计算每个输入位置的注意力权重。
  2. 加权求和:根据注意力权重对输入特征进行加权。
  3. 位置编码:通过位置编码添加时间位置信息。

3. BiLSTM(双向长短期记忆网络)

目的:捕捉序列中的前向和后向依赖关系。

原理

  • BiLSTM 包含两个 LSTM 网络,一个处理正向序列,另一个处理反向序列。
  • 双向信息融合提供更丰富的上下文信息。

流程

  1. 前向LSTM:处理序列中的正向时间依赖。
  2. 后向LSTM:处理序列中的反向时间依赖。
  3. 拼接:将前向和后向的输出拼接,形成更完整的特征表示。

4. 综合建模流程

1. 数据预处理

  • 数据清洗:处理缺失值和异常值。
  • 特征提取:提取和标准化多特征输入数据。

2. 模型构建

  • CNN(可选):用于特征提取。
  • Transformer:处理时序特征,生成序列的上下文表示。
  • BiLSTM:进一步捕捉序列中的双向依赖。

3. 参数优化

  • 使用 NGO 优化 Transformer 和 BiLSTM 模型的超参数。

4. 模型训练

  • 输入数据:将处理后的特征输入到 Transformer 和 BiLSTM。
  • 损失函数:使用适当的损失函数(如均方误差)进行训练。

5. 模型预测

  • 使用训练好的模型对新数据进行预测。

6. 模型评估

  • 评估模型的预测性能,如通过均方误差(MSE)或其他评估指标。

总结

NGO-Transformer-BiLSTM 组合模型利用北方苍鹰优化算法来优化模型参数,Transformer 处理复杂的时序特征,BiLSTM 捕捉双向依赖。这个综合模型通过以下步骤完成回归预测任务:数据预处理、模型构建、参数优化、模型训练、预测和评估。

二、实验结果

NGO-Transformer-BiLSTM回归预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

四、代码获取

私信即可 99米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP,NGO-Transformer-BiLSTM等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099457

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke