回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

本文主要是介绍回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

文章目录

  • 前言
    • 回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出
  • 一、NGO-Transformer-BiLSTM模型
      • 回归预测:NGO-Transformer-BiLSTM组合模型的数据预测
      • 1. NGO(北方苍鹰优化算法)
      • 2. Transformer
      • 3. BiLSTM(双向长短期记忆网络)
      • 4. 综合建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出

一、NGO-Transformer-BiLSTM模型

回归预测:NGO-Transformer-BiLSTM组合模型的数据预测

NGO-Transformer-BiLSTM 模型结合了北方苍鹰优化算法(NGO)、Transformer架构和双向长短期记忆网络(BiLSTM)。这个组合用于处理具有复杂时序和多特征输入的数据预测任务。以下是详细的原理和流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数,提高预测性能。

原理

  • 模拟苍鹰的猎食行为来优化模型参数。
  • 包括初始化种群、评估适应度、选择和更新种群等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(预测误差)。
  3. 更新:通过猎食行为更新种群。
  4. 迭代:重复更新直到满足停止条件。

2. Transformer

目的:处理复杂的时序依赖关系,捕捉长期依赖。

原理

  • 通过自注意力机制(Self-Attention)对输入数据进行加权求和,捕捉序列中的重要信息。
  • 具有多个编码器和解码器层,能够处理复杂的特征和依赖关系。

流程

  1. 自注意力计算:计算每个输入位置的注意力权重。
  2. 加权求和:根据注意力权重对输入特征进行加权。
  3. 位置编码:通过位置编码添加时间位置信息。

3. BiLSTM(双向长短期记忆网络)

目的:捕捉序列中的前向和后向依赖关系。

原理

  • BiLSTM 包含两个 LSTM 网络,一个处理正向序列,另一个处理反向序列。
  • 双向信息融合提供更丰富的上下文信息。

流程

  1. 前向LSTM:处理序列中的正向时间依赖。
  2. 后向LSTM:处理序列中的反向时间依赖。
  3. 拼接:将前向和后向的输出拼接,形成更完整的特征表示。

4. 综合建模流程

1. 数据预处理

  • 数据清洗:处理缺失值和异常值。
  • 特征提取:提取和标准化多特征输入数据。

2. 模型构建

  • CNN(可选):用于特征提取。
  • Transformer:处理时序特征,生成序列的上下文表示。
  • BiLSTM:进一步捕捉序列中的双向依赖。

3. 参数优化

  • 使用 NGO 优化 Transformer 和 BiLSTM 模型的超参数。

4. 模型训练

  • 输入数据:将处理后的特征输入到 Transformer 和 BiLSTM。
  • 损失函数:使用适当的损失函数(如均方误差)进行训练。

5. 模型预测

  • 使用训练好的模型对新数据进行预测。

6. 模型评估

  • 评估模型的预测性能,如通过均方误差(MSE)或其他评估指标。

总结

NGO-Transformer-BiLSTM 组合模型利用北方苍鹰优化算法来优化模型参数,Transformer 处理复杂的时序特征,BiLSTM 捕捉双向依赖。这个综合模型通过以下步骤完成回归预测任务:数据预处理、模型构建、参数优化、模型训练、预测和评估。

二、实验结果

NGO-Transformer-BiLSTM回归预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

四、代码获取

私信即可 99米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP,NGO-Transformer-BiLSTM等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于北方苍鹰优化NGO-Transformer-BiLSTM组合模型的数据预测Matlab程序多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099457

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4