老黄自己卷自己!GPU要一年更新一代!预告新动作:AI工厂将吞噬一切

2024-06-03 20:52

本文主要是介绍老黄自己卷自己!GPU要一年更新一代!预告新动作:AI工厂将吞噬一切,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

站在 AI 时代风口浪尖的弄潮儿英伟达又为大家带来了一场科技饕餮盛宴

昨晚 7 点,坐标中国台湾大学体育场,英伟达 CEO 黄仁勋为世界带来了一场名为 The Dawn of a New Industrial Revolution (揭开新工业革命序幕)的演讲。

在整个演讲中,老黄重新理解了英伟达与人工智能浪潮的关系,重磅剧透了下一代的 GPU 架构,并且从英伟达一系列“新动作”出发,点明了演讲题目:“AI 时代将会驱动下一场工业革命”

  3.5研究测试:
hujiaoai.cn

4研究测试:
askmanyai.cn

Claude-3研究测试:
hiclaude3.com

从 CPU 到 GPU,老黄挑战摩尔定律

到底是 GPU 架构催生了深度学习革命,还是 AI 发展挖掘出了 GPU 的潜力?在这次演讲中,老黄丝毫不谦虚的给出了英伟达的答案:

如果没有我们精心打造的打造的各类特定领域的库,全球深度学习科学家们就无法充分利用潜力。CUDA就像OpenGL之于计算机图形学,SQL之于数据分析。

人工智能崛起之所以有可能,完全因为我们相信只要让强大的计算变得越来越便宜,总会有人找到巨大的用途。

将 AI 领域这十余年间的锋芒毕露做一个归纳,老黄将一切都归因于 GPU 的发展。伴随着需求计算量指数级的增长,CPU 性能的增长速度已经几乎被证明无法满足「计算通胀」,而真正使得目前我们可以张口闭口谈论天文级别数据量与模型规模的核心,正是来源于英伟达与它的 GPU

图片

老黄如此使用数据描述英伟达芯片过去的成绩:

过去 8 年,英伟达的芯片算力提升了 1000 倍,单位能耗降低至原来的 1/350

如果我们再贴上摩尔定律的内容:

集成电路上可以容纳的晶体管数目在大约每经过18个月到24个月便会增加一倍

图片

恐怕我们也不会惊讶于英伟达的自信:

正因为我们利用特定算法将计算边际成本降低了100万级别,今天使用互联网上的所有数据来训练大模型才成为了所有人默认合乎逻辑的选择,不再有人怀疑和质疑这个做法

One-Year-Rhythm,下一代 GPU 就在一年后?

这场发布会非常吸引人眼球的一点,来源于黄教主提出的「One-Year-Rhythm」的节奏,老黄在演讲中提到:

英伟达新的GPU架构将从两年一次迭代,加速到以一年为周期推出

这个速度非常夸张,要知道英伟达上次革新自己的 GPU 架构不是在三年前而是在三个月前的 GTC大会中推出的 Blackwell。而在仅仅三个月后,黄教主又马不停蹄的给出了新的规划:2025 年,Blackwell Ultra ——> 2026 年,Rubin ——> 2027 年,Rubin Ultra

图片

这种革新速度已经不能用「市场竞争」来形容了,作为 GPU 领域独孤求败的英伟达,现在只能和自己想象中的风车巨人进行搏斗。

而关于此,黄教主只能如是说:

我们的基本理念非常简单,我们要建立整个数据中心,再将它分解,并以一年的节奏部分卖给用户。我们将一切推向技术极限。无论是什么 TSMC 工艺,技术都会把它推向绝对极限,无论是什么封装技术,都将它推向绝对极限,无论是什么存储技术,都将它推向绝对极限,无论是网络技术,光学技术,一切都将被推向极限。

揭开新工业革命序幕

关注大模型的每一位估计都对 Token 这个词并不陌生,而在昨天,老黄给予了它一个中文翻译——词元。

图片

词元,是大模型处理一切“知识”的最小单位,Token 将不同模态的信息进行统一

当然有些词元它可能是影像,它可能是线图,可能是表格、歌曲、演讲、视讯、影片,有可能是任何形式,只要是有意义的,都算是,甚至包括蛋白质、化学分子等等。

而在这个 AI 时代,词元成为了一切的载体,老黄这样说:

几乎所有的事情都可以把它转换成Token,Token是非常有价值的。我们现在所处的不是AI时代,而是一个生成式AI时代。

黄教主将这样一个时代比喻为一个 AI 工厂,它正在生产一种「新形态的大宗商品」,这种产品每个产业都用得到,具有无与伦比的价值。这种工厂将会带来一场工业革命,为许多行业创造一种新的商品,而这种商品,正是「词元」

今年 3 月,英伟达就推出了他们的「推理即服务」产品——NVIDIA NIM,作为一个软件平台,英伟达希望通过 NIM 去简化定制和预先训练的 AI 模型在生产环境中的部署。

图片

整个 NIM 事实上是一个大的容器,这个容器里面打包优化好了各种“软件”,而这个容器可以将企业部署 AI 应用程序的时间,从几天压缩到几分钟:

这些容器,这些container里头有非常多很棒的软件。在这个容器里头有CUDA、cuDNN、TensorRT Triton,它是推理即服务,它是在云端上的一个堆叠。

图片

AI 工厂是一个基础概念,而向上,它几乎可以产生无限的可能,从数字人、物理世界到真正的 Physical AI,伴随着“AI 工厂化”转型,作为 Token 的真正意义上的“生产者”,也难怪于英伟达写出 The Dawn of a New Industrial Revolution 这样一个自负的标题了。

这篇关于老黄自己卷自己!GPU要一年更新一代!预告新动作:AI工厂将吞噬一切的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028088

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到