Pandas利用主表更新子表指定列小技巧

2025-05-02 17:50

本文主要是介绍Pandas利用主表更新子表指定列小技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同...

一、前言

工作的小技巧,利用pandas读取主表和子表,利用主表的指定列,更新子表的指定列。

案例:

主表:
   uid name
0  101   编程小白
1  102   小红
2  103   小蓝

子表:
  name zb_uid
0   小白   None
1   小红   None
2   小绿   None

需求:主表的name列数据和子表name列数据数据相同时,将 主表对应的 uid 赋值给 子表的 zb_uid

二、基本案例

1. 创建主表数据

import pandas as pd

# 主表示例数据
data_sheet = {
    'uid': [101, 102, 103],
    'name': ['小白', '小红', '小蓝'],
}
df_sheet = pd.DataFrame(data_sheet)
print('主表:')
print(df_sheet)
  • data_sheet 是一个字典,其中键 'uid' 对应一个包含三个整数的列表,表示用户的唯一标识;键 'name' 对应一个包含三个字符串的列表,表示用户的姓名。
  • pd.DataFrame(data_sheet) 把 data_sheet 字典转换为 pandas 的 DataFrame 对象 df_sheetDataFrame 是一种二维表格型数据结构,类似于电子表格或 SQL 表。
  • 最后通过 print 函数打印出主表的内容。

2. 创建映射字典

# 创建一个映射字典,将 name 映射到 uid
name_uid_map = df_sheet.set_index('name')['uid'].to_dict()
print('映射字典:',name_uid_map)
  • df_sheet.set_index('name') 把 df_sheet 的 'name' 列设置为索引,这样就可以通过姓名来定位对应的行。
  • ['uid'] 选取 uid 列的数据。
  • to_dict() 把选取的数据转换为字典,字典的键是姓名,值是对应的 uid
  • 最后通过 print 函数打印出这个映射字典。

3. 创建子表数据

# 子表示例数据
data_sheet1 = {
    'name': ['小白', '小红', '小绿'],
    'zb_uid': [None,None,None]
}
df_sheet1 = pd.DataFrame(data_sheet1)
print('子表:')
print(df_sheet1)
  • data_sheet1 是一个字典,键 'name' 对应一个包含三个字符串的列表,表示用户姓名;键 'zb_uid' 对应一个China编程包含China编程三个 None 值的列表,这里 zb_uid 初始值都为空,后续会进行更新。
  • pd.DataFrame(data_sheet1) 将 data_sheet1 字典转换为 DataFrame 对象 df_sheet1
  • 最后通过 print 函数打印出子表的内容。

4. 更新子表的 zb_uid 列

# 更新子表的 zb_uid 列
df_sheet1['zb_uid'] = df_sheet1['name'].map(name_uid_map).fillna(df_sheet1['zb_uid'])
  • df_sheet1['name'].map(name_uid_map) 会根据 name_uid_map 字典,将 df_sheet1 中 'name' 列的每个值映射为对应的 uid。如果 'name' 列的值在 name_uid_map 字典中不存在,就会映射为 NaN
  • fillna(df_sheet1['zb_uid']) 把映射结果中的 NaN 值用 df_sheet1 中原来的 'zb_uid' 列的值填充。这里由于 zb_uid 初始值为 None,在 pandas 中会被视为 NaN,所以实际操作就是保留原来的 NaN 值。
  • 最后把更新后的值赋给 df_sheet1 的 'zb_uid' 列。

5. 完整代码

import pandas as pd


# 主表示例数据
data_sheet = {
    'uid': [101, 102, 103],
    'name': ['小白', '小红', '小蓝'],
}
df_sheet = pd.DataFrame(data_sheet)
print('主表:')
print(df_sheet)
# 创建一个映射字典,将 name 映射到 uid
name_uid_map = df_sheet.set_index('name')['uid'].to_dict()
print('映射字典:',name_uid_map)


# 子表示例数据
data_sheet1 = {
    'name': ['小白python', '小红', '小绿'],
    'zb_uid': [None,None,None]
}
df_sheet1 = pd.DataFrame(data_sheet1)
print('子表:')
print(df_sheet1)

# 更新子表的 zb_uid 列
df_sheet1['zb_uid'] = df_sheet1['name'].map(name_uid_map).fillna(df_sheet1['zb_uid'])

print("更新后的子表:")
print(df_sheet1)

运行结果:

主表:
  &nbs编程China编程p;uid name
0  101   小白
1  102   小红
2  103   小蓝
子表:
  name zb_uid
0   小白   None
1   小红   None
2   小绿   None
映射字典: {'小白': 101, '小红': 102, '小蓝': 103}
更新后的子表:
  name  zb_uid
0   小白   101.0
1   小红   102.0
2   小绿     NaN

6. 总结

这段代码的主要功能是根据主表中姓名和 uid 的对应关系,更新子表中 zb_uid 列的值。如果子表中的姓名在主表中存在,就用对应的 uid 填充 zb_uid;如果不存在,则保持 zb_uid 为空。

三、升级案例

在基本案例的基础上,根据名字和拼音的映射字典,更新主表和子表的name字段:

import pandas as pd


def get_namePingyingMap():
	// 下面方式是手动建映射字典,当然如果你有数据库也可以从数据库读取然后建映射字典
    name_pingying_map = {'小白':'xiaobai','小红':'xiaohong','小蓝':'xiaolan','小绿':'xiaol'}
    print('name_pingying_map映射字典:', name_pingying_map)

    return name_pingying_map


# 主表示例数据
data_sheet = {
    'uid': [101, 102, 103],
    'name': ['小白', '小红', '小蓝'],
}
df_sheet = pd.DataFrame(data_sheet)
print('主表:')
print(df_sheet)
# 更新主表的 name 列
name_pingying_map = get_namePingyingMap()
df_sheet['name'] = df_sheet['name'].map(name_pingying_map).fillna(df_sheet['name'])
print("更新后的主表:")
print(df_sheet)
# 创建一个映射字典,将 name 映射到 uid
name_uid_map = df_sheet.set_index('name')['uid'].to_dict()
print('name_uid_map映射字典:',name_uid_map)

# 子表示例数据
data_sheet1 = {
    'name': ['小白', '小红', '小绿'],
    'zb_uid': [None,None,None]
}
df_sheet1 = pd.DataFrame(data_sheet1)
print('子表:')
print(df_sheet1)

# 更新子表的 name 列
df_sheet1['name'] = df_sheet1['name'].map(name_pingying_map).fillna(df_sheet1['name'])
# 更新子表的 zb_uid 列
df_sheet1['zb_uid'] = df_sheet1['name'].map(name_uid_map).fillna(df_sheet1['zb_uid'])

print("更新后的子表:")
print(df_sheet1)

运行结果:

主表:
   uid name
0  101   小白
1  102   小红
2  103   小蓝
name_pingying_map映射字典: {'小白': 'xiaobai', '小红': 'xiaohong', '小蓝': 'xiaolan', '小绿': 'xiaolù'}
更新后的主表:
   uid      name
0  101   xiaobai
1  102  xiaohong
2  103   xiaolan
name_uid_map映射字典: {'xiaobai': 101, 'xiaohong': 102, 'xiaolan': 103}
子表:
  name zb_uid
0   小白   None
1   小红   None
2   小绿   None
更新后的子表:
       name  zb_uid
0   xiaobai   101.0
1  xiaohong   102.0
2    xiaolù     NaN

到此这篇关于Pandas利用主表更新子表指定列小技巧的文章就介绍到这了,更多相关Pandas 更新子表指定列内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Pandas利用主表更新子表指定列小技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154451

相关文章

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

90%的人第一步就错了! 顺利登录wifi路由器后台的技巧

《90%的人第一步就错了!顺利登录wifi路由器后台的技巧》登录Wi-Fi路由器,其实就是进入它的后台管理页面,很多朋友不知道该怎么进入路由器后台设置,感兴趣的朋友可以花3分钟了解一下... 你是不是也遇到过这种情况:家里网速突然变慢、想改WiFi密码却不知道从哪进路由器、新装宽带后完全不知道怎么设置?别慌

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

录音功能在哪里? 电脑手机等设备打开录音功能的技巧

《录音功能在哪里?电脑手机等设备打开录音功能的技巧》很多时候我们需要使用录音功能,电脑和手机这些常用设备怎么使用录音功能呢?下面我们就来看看详细的教程... 我们在会议讨论、采访记录、课堂学习、灵感创作、法律取证、重要对话时,都可能有录音需求,便于留存关键信息。下面分享一下如何在电脑端和手机端上找到录音功能

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变