conda安装GPU版pytorch默认却是cpu版本

2025-06-03 16:50

本文主要是介绍conda安装GPU版pytorch默认却是cpu版本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的...

一、问题描述

按照pytorch官网安装pytorch GPU版本,结果却是CPU版本。

conda安装GPU版pytorch默认却是cpu版本

我的倔脾气,嘿!反反复复安装、卸载个五、六、七、八 遍。才意识到再操作一遍也是一样的结果。

二、网上解决方案罗列【此节为反面方案罗列!!!】

还是上网搜索:

conda安装GPU版pytorch默认却是cpu版本

结果发现,遇到和我同样问题的还不少。

我发现大家的解决办法不相同,大致如下:

解决方案一:卸载pytorch-mutex

conda安装GPU版pytorch默认却是cpu版本

解决方案二:卸载cpuonly

conda安装GPU版pytorch默认却是cpu版本


解决方案三:卸载numpy,哦呵…

conda安装GPU版pytorch默认却是cpu版本

如果继续往下看,你或许明白上面的方案的确能解决问题。但是,这种神秘性以及某种被约束的感觉真的不是太好。上面这些方案,其实就是瞎猫碰上死耗子!!! 他们能起作js用本身就是一个BUG。

程序员的诡异操作,写的代码莫名其妙运行起来了。。

想知道这个问题产生的根本原因以及根本解决方案,那么请继续跟着我一起往下看吧&helljavascriptip;

三、发现的根本原因[独家]

3.1 pytorch文件命名格式

首先介绍一个pytorch的文件名的普通命名格式。

一个在python=3.7conda 环境下,cChina编程udatoolkit=10.1版本的pytorch=1.7.0的文件名为:pytorch-1.7.0-py3.7_cuda10.1.243_cudnn7.6.3_0.tar.bz2

一个在python=3.7conda 环境下,CPU版本的pytorch=1.7.0的文件名为pytorch-1.7.0-py3.7_cpu_0.tar.bz2

从上可以看出,不同的python版本,GPU/CPU,若是GPU版本,则cudatoolkit的版本,再加上pytorch的版本www.chinasem.cn,唯一指定一个pytorch安装文件。

明白这个,我们再继续往下。

3.2 问题的根本原因:找不到对应GPU版本的pytorch文件,所以conda就用CPU替代了=v=

先说一下问题产生的根本原因:指定某一版本cudatoolkit下的指定版本的pytorch不在源(国内conda镜像源或因外源)中,导致某一版本cudatoolkit下的指定版本的pytorch无法被conda install找到,然而不凑巧的是,源中却有指定版本的pytorch,不过它是CPU版本。那么,conda install这个小机灵鬼自作主张的替你安装了这个版本。结果就是,你觉得明明安装的是GPU版pytorch,可是像是有种神秘力量让你最终得到的总是cpu版pytorch。

例子1

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

-c pytorch是指在官方源里找库。此时,如果conda官方源里没有(或者由于网络问题无法访问官方源)cudatoolkit=11.3对应的GPU版pytorch,而此时conda install又找到一个CPU版的pytorch,那么结果是,它给你安装了这个cpu版的pytorch

例子2

conda create -n pytorch-GPU python=3.7 # 创建一个python3.7的conda环境
conda activate pytorch-GPU # 进入该conda环境
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ # 换conda源
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ # 换conda源
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ # 换conda源
conda install cudatoolkit=10.0 -c http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/ # 安装 cuda
conda install cudnn=7.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/ # 安装cudnn
conda install pytorch==1.7.0 torchvision==0.8 cudatoolkit=10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/# 安装pytorch

我想通过国内的镜像源来安装cudatoolkit=10.0版本的pytorch==1.7.0,结果我发现安装的还是cpu版本。我在https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/上发现,原来镜像源里根本没这个文件。于是,conda install这个小机灵鬼又自作主张的给我装了cpu版本的文件pytorch-1.7.0-py3.7_cpu_0.tar.bz2,它给我装的文件python版本相同,pytorch版本相同,唯一不同的就是CPU/GPU。

conda安装GPU版pytorch默认却是cpu版本

此处需要指出,若采用官方命令conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch,安装的是pytorch==1.4.0版本,此版本在from torch.cuda.amp import GradScaler, autocast时会报错from torch.cuda.amp import GradScaler, autocast。网上说是1.4版本太低,换1.7就好了。

3.3 解决方案

我们安装前先要确定源中是否真的有我们组合出来的版本,[python|cudatoolkit|pytorch]这三个版本不同的组合,真的不一定有。

例如,我发现根本没有满足python=3.7cudatoolkit=10.0以及pytorch=1.7.0的版本,但是在镜像源中,我发现有python=3.7cudatoolkit=10.1以及pytorch=1.7.0的版本,于是用以下命令安装:

conda create -n pytorch-GPU python=3.7 # 创建一个python3.7的conda环境
conda activate pytorch-GPU # 进入该conda环境
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ # 换conda源
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ # 换conda源
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ # 换conda源
conda install cudatoolkit=10.1 -c http://mirrors.tuhttp://www.chinasem.cnna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/ # 安装 cuda
conda install cudnn=7.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/ # 安装cudnn
conda install pytorch==1.7.0 torchvision==0.8 cudatoolkit=10.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/# 安装pytorch

仔细看下图的倒数第5行,我们发现,conda install找到对应的gpu版本,此时,它便不好去自作主张了,乖乖地给我安装gpu版本吧。

conda安装GPU版pytorch默认却是cpu版本

到此这篇关于conda安装GPU版pytorch默认却是cpu版本的文章就介绍到这了,更多相关安装pytorch gpu会默认安装cpu内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)! 

这篇关于conda安装GPU版pytorch默认却是cpu版本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154892

相关文章

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

SQL server数据库如何下载和安装

《SQLserver数据库如何下载和安装》本文指导如何下载安装SQLServer2022评估版及SSMS工具,涵盖安装配置、连接字符串设置、C#连接数据库方法和安全注意事项,如混合验证、参数化查... 目录第一步:打开官网下载对应文件第二步:程序安装配置第三部:安装工具SQL Server Manageme

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到