LeetCode力扣题目111:多种算法对比实现二叉树的最小深度

本文主要是介绍LeetCode力扣题目111:多种算法对比实现二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意:叶子节点是指没有子节点的节点。

示例

示例

输入:

    3/ \9  20/  \15   7

输出:2 (根节点到节点 9 的路径最短)

方法一:递归深度优先搜索(DFS)

解题步骤
  1. 递归终止条件:如果当前节点为空,则返回无穷大(表示没有子节点)。
  2. 递归左右子树:计算左子树和右子树的最小深度。
  3. 计算当前节点的最小深度:当前节点的最小深度为左右子树的最小深度加一。
Python 示例
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):"""计算二叉树的最小深度:param root: TreeNode, 二叉树的根节点:return: int, 最小深度"""if not root:return 0left = minDepth(root.left)right = minDepth(root.right)# 如果左或右子树为空,应返回非空子树的深度if not root.left or not root.right:return max(left, right) + 1return min(left, right) + 1
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),递归栈的深度,其中 (h) 是树的高度。
    方法一的基本思路是使用深度优先搜索(DFS)递归地检查每个节点的左右子树的最小深度。虽然这种方法直观易懂,但存在重复计算和不必要的深度遍历问题,尤其是在遇到高度不平衡的树时。我们可以通过一些改进来优化这种方法。

方法一改进:优化的DFS

改进点
  1. 提前终止:在发现当前节点的一个子树深度已经小于另一个子树时,可以提前终止对该较深子树的深度计算。这样做可以减少不必要的递归调用。
  2. 缓存结果:对于每个节点的左右子树深度,可以使用哈希表或数组缓存其结果,避免重复计算。
Python 示例
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):from functools import lru_cache@lru_cache(None)  # 缓存节点深度计算结果def depth(node):if not node:return float('inf')  # 空节点返回无穷大,表示不可达if not node.left and not node.right:return 1  # 叶子节点深度为1# 使用缓存结果,避免重复计算left_depth = depth(node.left)right_depth = depth(node.right)# 提前终止,如果一个子树深度明显小于另一个,不继续计算较大深度子树return min(left_depth, right_depth) + 1if not root:return 0return depth(root)
算法分析
  • 时间复杂度:通过缓存优化后,每个节点最多被计算一次,因此时间复杂度为 (O(n))。
  • 空间复杂度:因为增加了缓存,所以空间复杂度可能稍高,但在最坏情况下仍然为 (O(h)),其中 (h) 是树的高度,对应于递归栈的最大深度。
优劣势比较
  • 优点
    • 减少了不必要的计算,提高了效率。
    • 通过缓存机制,避免了重复计算相同节点的深度。
  • 缺点
    • 代码复杂度略有增加,需要理解缓存机制。
    • 空间开销可能略大,因为要存储每个节点的计算结果。

通过这种改进,DFS 方法不仅变得更加高效,而且也避免了在不平衡树上的性能陷阱。这使得它更加适用于大规模或深度较大的树结构的场景。

方法二:迭代广度优先搜索(BFS)

解题步骤
  1. 使用队列:利用队列存储每层的节点及其深度。
  2. 层级遍历:遍历每个节点,如果是叶子节点,直接返回其深度。
  3. 更新队列:将节点的子节点入队。
Python 示例
from collections import dequedef minDepth(root):if not root:return 0queue = deque([(root, 1)])  # 存储节点及其深度while queue:node, depth = queue.popleft()if not node.left and not node.right:return depthif node.left:queue.append((node.left, depth + 1))if node.right:queue.append((node.right, depth + 1))
算法分析
  • 时间复杂度:(O(n)),每个节点至多访问一次。
  • 空间复杂度:(O(n)),在最坏的情况下,队列中需要存储所有节点。

方法二使用的是广度优先搜索(BFS)来确定二叉树的最小深度。它通过迭代方式检查每一层的节点,直到找到第一个叶子节点,然后立即返回这个叶子节点的深度。这个方法的主要优点是它不必检查所有的节点,尤其是在一个高度不平衡的树中,它可以更快地找到最浅的叶子节点。尽管如此,我们仍然可以对其进行一些改进,以提高其效率和可用性。

方法二改进:优化的BFS

改进点
  1. 避免使用额外的深度存储:在当前的实现中,每个节点及其对应的深度都存储在队列中。我们可以优化这一点,通过在每一轮循环开始时记录队列的长度,从而避免存储每个节点的深度。
  2. 更早的终止条件:在找到第一个叶子节点后,可以立即退出循环,而不是等待当前层的所有节点都被检查完。
Python 示例
from collections import dequeclass TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):if not root:return 0queue = deque([root])depth = 0  # 初始化深度为0while queue:depth += 1  # 开始新的一层,深度加1for _ in range(len(queue)):  # 遍历当前层的所有节点node = queue.popleft()if not node.left and not node.right:  # 找到第一个叶子节点return depthif node.left:queue.append(node.left)if node.right:queue.append(node.right)return depth  # 在所有节点都有子节点的情况下返回最终深度
算法分析
  • 时间复杂度:在最坏情况下,即遍历到最后一层才找到叶子节点,时间复杂度仍为 (O(n))。
  • 空间复杂度:空间复杂度主要取决于队列中存储的节点数,最坏情况下,队列中可能包含 (n/2) 个节点(最后一层的节点数),因此空间复杂度为 (O(n))。
优劣势比较
  • 优点
    • 立即找到叶子节点后就结束,避免了不必要的计算。
    • 不需要额外存储节点深度,简化了代码。
  • 缺点
    • 在极端情况下(例如,当树高度非常大时),空间复杂度可能仍然较高。

通过这种改进,BFS 方法更加高效和直观,尤其是在处理大型数据集时,这种方法能快速找到最小深度,而无需深入遍历树的所有部分。这使得它在实际应用中更加实用,尤其是在数据结构动态变化较大的环境中。

应用示例

这些方法在需要快速确定数据结构(如游戏、网络路由、社交网络的层级结构)中的最小路径或深度时非常有用。

这篇关于LeetCode力扣题目111:多种算法对比实现二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969808

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja