LeetCode力扣题目111:多种算法对比实现二叉树的最小深度

本文主要是介绍LeetCode力扣题目111:多种算法对比实现二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意:叶子节点是指没有子节点的节点。

示例

示例

输入:

    3/ \9  20/  \15   7

输出:2 (根节点到节点 9 的路径最短)

方法一:递归深度优先搜索(DFS)

解题步骤
  1. 递归终止条件:如果当前节点为空,则返回无穷大(表示没有子节点)。
  2. 递归左右子树:计算左子树和右子树的最小深度。
  3. 计算当前节点的最小深度:当前节点的最小深度为左右子树的最小深度加一。
Python 示例
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):"""计算二叉树的最小深度:param root: TreeNode, 二叉树的根节点:return: int, 最小深度"""if not root:return 0left = minDepth(root.left)right = minDepth(root.right)# 如果左或右子树为空,应返回非空子树的深度if not root.left or not root.right:return max(left, right) + 1return min(left, right) + 1
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),递归栈的深度,其中 (h) 是树的高度。
    方法一的基本思路是使用深度优先搜索(DFS)递归地检查每个节点的左右子树的最小深度。虽然这种方法直观易懂,但存在重复计算和不必要的深度遍历问题,尤其是在遇到高度不平衡的树时。我们可以通过一些改进来优化这种方法。

方法一改进:优化的DFS

改进点
  1. 提前终止:在发现当前节点的一个子树深度已经小于另一个子树时,可以提前终止对该较深子树的深度计算。这样做可以减少不必要的递归调用。
  2. 缓存结果:对于每个节点的左右子树深度,可以使用哈希表或数组缓存其结果,避免重复计算。
Python 示例
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):from functools import lru_cache@lru_cache(None)  # 缓存节点深度计算结果def depth(node):if not node:return float('inf')  # 空节点返回无穷大,表示不可达if not node.left and not node.right:return 1  # 叶子节点深度为1# 使用缓存结果,避免重复计算left_depth = depth(node.left)right_depth = depth(node.right)# 提前终止,如果一个子树深度明显小于另一个,不继续计算较大深度子树return min(left_depth, right_depth) + 1if not root:return 0return depth(root)
算法分析
  • 时间复杂度:通过缓存优化后,每个节点最多被计算一次,因此时间复杂度为 (O(n))。
  • 空间复杂度:因为增加了缓存,所以空间复杂度可能稍高,但在最坏情况下仍然为 (O(h)),其中 (h) 是树的高度,对应于递归栈的最大深度。
优劣势比较
  • 优点
    • 减少了不必要的计算,提高了效率。
    • 通过缓存机制,避免了重复计算相同节点的深度。
  • 缺点
    • 代码复杂度略有增加,需要理解缓存机制。
    • 空间开销可能略大,因为要存储每个节点的计算结果。

通过这种改进,DFS 方法不仅变得更加高效,而且也避免了在不平衡树上的性能陷阱。这使得它更加适用于大规模或深度较大的树结构的场景。

方法二:迭代广度优先搜索(BFS)

解题步骤
  1. 使用队列:利用队列存储每层的节点及其深度。
  2. 层级遍历:遍历每个节点,如果是叶子节点,直接返回其深度。
  3. 更新队列:将节点的子节点入队。
Python 示例
from collections import dequedef minDepth(root):if not root:return 0queue = deque([(root, 1)])  # 存储节点及其深度while queue:node, depth = queue.popleft()if not node.left and not node.right:return depthif node.left:queue.append((node.left, depth + 1))if node.right:queue.append((node.right, depth + 1))
算法分析
  • 时间复杂度:(O(n)),每个节点至多访问一次。
  • 空间复杂度:(O(n)),在最坏的情况下,队列中需要存储所有节点。

方法二使用的是广度优先搜索(BFS)来确定二叉树的最小深度。它通过迭代方式检查每一层的节点,直到找到第一个叶子节点,然后立即返回这个叶子节点的深度。这个方法的主要优点是它不必检查所有的节点,尤其是在一个高度不平衡的树中,它可以更快地找到最浅的叶子节点。尽管如此,我们仍然可以对其进行一些改进,以提高其效率和可用性。

方法二改进:优化的BFS

改进点
  1. 避免使用额外的深度存储:在当前的实现中,每个节点及其对应的深度都存储在队列中。我们可以优化这一点,通过在每一轮循环开始时记录队列的长度,从而避免存储每个节点的深度。
  2. 更早的终止条件:在找到第一个叶子节点后,可以立即退出循环,而不是等待当前层的所有节点都被检查完。
Python 示例
from collections import dequeclass TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef minDepth(root):if not root:return 0queue = deque([root])depth = 0  # 初始化深度为0while queue:depth += 1  # 开始新的一层,深度加1for _ in range(len(queue)):  # 遍历当前层的所有节点node = queue.popleft()if not node.left and not node.right:  # 找到第一个叶子节点return depthif node.left:queue.append(node.left)if node.right:queue.append(node.right)return depth  # 在所有节点都有子节点的情况下返回最终深度
算法分析
  • 时间复杂度:在最坏情况下,即遍历到最后一层才找到叶子节点,时间复杂度仍为 (O(n))。
  • 空间复杂度:空间复杂度主要取决于队列中存储的节点数,最坏情况下,队列中可能包含 (n/2) 个节点(最后一层的节点数),因此空间复杂度为 (O(n))。
优劣势比较
  • 优点
    • 立即找到叶子节点后就结束,避免了不必要的计算。
    • 不需要额外存储节点深度,简化了代码。
  • 缺点
    • 在极端情况下(例如,当树高度非常大时),空间复杂度可能仍然较高。

通过这种改进,BFS 方法更加高效和直观,尤其是在处理大型数据集时,这种方法能快速找到最小深度,而无需深入遍历树的所有部分。这使得它在实际应用中更加实用,尤其是在数据结构动态变化较大的环境中。

应用示例

这些方法在需要快速确定数据结构(如游戏、网络路由、社交网络的层级结构)中的最小路径或深度时非常有用。

这篇关于LeetCode力扣题目111:多种算法对比实现二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969808

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换