分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error

本文主要是介绍分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提纲:

  1. 分类模型 与 Loss 函数的定义,

  2. 为什么不能用 Classification Error,

  3. Cross Entropy 的效果对比,
  4. 为什么不用 Mean Squared Error,

  5. 定量理解 Cross Entropy,
  6. 总结,
  7. 参考资料。
  8. 交叉熵定义:http://blog.csdn.net/lanchunhui/article/details/50970625

分类模型 与 Loss 函数的定义


分类和回归问题,是监督学习的 2 大分支。

不同点在于:分类问题的目标变量是离散的,而回归是连续的数值。

本文讨论的是分类模型。


分类模型的例子:

根据年龄、性别、年收入等相互独立的特征,

预测一个人的政治倾向(民主党、共和党、其他党派)。


为了训练模型,必须先定义衡量模型好与坏的标准。

在机器学习中,我们使用 loss / cost,即,

当前模型与理想模型的差距。

训练的目的,就是不断缩小 loss / cost.


为什么不能用 classification error


\text{classification error} = \frac{\text{count of error items}}{\text{count of all items}}

大多数人望文生义的 loss,可能是上面这个公式。

我们用一个的实际模型来看 classification error 的弊端。


使用 3 组训练数据,

computed 一栏是预测结果,targets 是预期结果。

二者的数字,都可以理解为概率。

correct 一栏表示预测是否正确。

模型 1

computed       | targets              | correct?
------------------------------------------------
0.3  0.3  0.4  | 0  0  1 (democrat)   | yes
0.3  0.4  0.3  | 0  1  0 (republican) | yes
0.1  0.2  0.7  | 1  0  0 (other)      | no

item 1 和 2 以非常微弱的优势判断正确,item 3 则彻底错误。

\text{classification error} = 1/3 = 0.33

模型 2

computed       | targets              | correct?
-------------------------------------------------
0.1  0.2  0.7  | 0  0  1 (democrat)   | yes
0.1  0.7  0.2  | 0  1  0 (republican) | yes
0.3  0.4  0.3  | 1  0  0 (other)      | no

item 1 和 2 的判断非常精准,item 3 判错,但比较轻。

\text{classification error} = 1/3 = 0.33

结论

2 个模型的 classification error 相等,但模型 2 要明显优于模型 1.

classification error 很难精确描述模型与理想模型之间的距离。

Cross-Entropy 的效果对比

TensoFlow 官网的 MNIST For ML Beginners 中 cross entropy 的计算公式是:

H_{y'}(y) := -\sum_{i}y'_i \log(y_i)

根据公式,

第一个模型中第一项的 cross-entropy 是:

-( (ln(0.3)*0) + (ln(0.3)*0) + (ln(0.4)*1) ) = -ln(0.4)

所以,第一个模型的 ACE ( average cross-entropy error ) 是

-(ln(0.4) + ln(0.4) + ln(0.1)) / 3 = 1.38

第二个模型的 ACE 是:

(ln(0.7) + ln(0.7) + ln(0.3)) / 3 = 0.64

结论

ACE 结果准确的体现了模型 2 优于模型 1。

cross-entropy 更清晰的描述了模型与理想模型的距离。


为什么不用 Mean Squared Error (平方和)


若使用 MSE(mean squared error),

第一个模型第一项的 loss 是

(0.3 - 0)^2 + (0.3 - 0)^2 + (0.4 - 1)^2 = 0.09 + 0.09 + 0.36 = 0.54

第一个模型的 loss 是

(0.54 + 0.54 + 1.34) / 3 = 0.81

第二个模型的 loss 是

(0.14 + 0.14 + 0.74) / 3 = 0.34

看起来也是蛮不错的。为何不用?

分类问题,最后必须是 one hot 形式算出各 label 的概率,

然后通过 argmax 选出最终的分类。

(稍后用一篇文章解释必须 one hot 的原因)

在计算各个 label 概率的时候,用的是 softmax 函数。

softmax(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}

如果用 MSE 计算 loss,

输出的曲线是波动的,有很多局部的极值点。

即,非凸优化问题 (non-convex)

cross entropy 计算 loss,则依旧是一个凸优化问题,

用梯度下降求解时,凸优化问题有很好的收敛特性。

定量理解 cross entropy

训练的时候,loss 为 0.1 是什么概念,0.01 呢?

总结


分类问题,都用 onehot + cross entropy

training 过程中,分类问题用 cross entropy,回归问题用 mean squared error。

training 之后,validation / testing 时,使用 classification error,更直观,而且是我们最关注的指标。

参考资料

分类模型的本质是组合数学问题 A Tutorial on the Cross-Entropy Method

文中的对比模型来自:Why You Should Use Cross-Entropy Error Instead Of Classification Error Or Mean Squared Error For Neural Network Classifier Training

关于 cross entropy 与 MSE 的详细对比:books.jackon.me/Cross-E

Ng 的公开课中有详细讨论 logistic regression 的 loss 函数 coursera.org/learn/mach

这篇关于分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957966

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完