Python中的NumPy入门:科学计算与数组操作的10个基础教程

2024-05-03 21:04

本文主要是介绍Python中的NumPy入门:科学计算与数组操作的10个基础教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言:走进NumPy的世界

欢迎来到Python科学计算的核心地带——NumPy!它就像一个拥有强大魔力的数学工具箱,专为处理多维数组而生,让你在数据分析、机器学习等领域如虎添翼。今天,我们将一起踏上这趟十步旅程,从零开始,轻松掌握NumPy的基础知识与操作技巧。

2. 教程1:安装与导入NumPy

首先,确保你的Python环境中已经安装了NumPy。打开命令行,输入以下命令:

pip install numpy

安装完成后,在Python脚本中导入NumPy库:

import numpy as np

记住,我们通常用np作为NumPy的别名,这样在后续代码中可以更简洁地调用其功能。

3. 教程2:认识NumPy数组——创建与属性

NumPy的核心是“数组”(Array)。创建一个简单的整数数组:

arr = np.array([1, 2, 3, 4, 5])
print(arr)运行这段代码,你会看到输出:[1 2 3 4 5]数组有多种属性,如形状(shape)、维度(ndim)和数据类型(dtype):```python
print("Shape:", arr.shape)
print("Dimensions:", arr.ndim)
print("Data type:", arr.dtype)

这将揭示数组的尺寸信息和数据类型。

4. 教程3:数组索引与切片,轻松定位数据

访问数组元素就像访问列表一样简单:

print("First element:", arr[0])  # 输出:1

切片操作同样适用:

slice_arr = arr[1:4]  # 获取第二个至第四个元素
print(slice_arr)  # 输出:[2 3 4]

5. 教程4:数组运算:算术、逻辑与比较

NumPy数组支持丰富的算术运算:

# 加法
result_add = arr + 2
print(result_add)# 乘法
result_mul = arr * 2
print(result_mul)# 等于
result_eq = arr == 3
print(result_eq)

这些运算会逐元素进行,结果仍为数组。

6. 教程5:广播机制:大小不同的数组间高效运算

即使数组大小不同,NumPy也能通过“广播”巧妙地完成运算:

small_arr = np.array([1, 2, 3])
broadcast_result = small_arr + arr
print(broadcast_result)

广播将小数组自动扩展到与大数组匹配的形状,然后进行对应元素的运算。

7. 教程6:统计分析:快速掌握数组摘要信息

NumPy提供了一组便捷函数,用于计算数组的各种统计指标:

print("Minimum:", np.min(arr))
print("Maximum:", np.max(arr))
print("Mean:", np.mean(arr))
print("Standard Deviation:", np.std(arr))

这些函数让你瞬间获得数据集的关键统计信息。

8. 教程7:重塑与拼接:灵活调整数组形状

重塑(reshape)改变数组的形状而不改变数据内容:

reshaped_arr = arr.reshape(2, 3)
print(reshaped_arr)

拼接(concatenate)则可以将多个数组按指定轴合并:

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])concatenated = np.concatenate((arr1, arr2), axis=0)
print(concatenated)

9. 教程8:排序与筛选:有序数据,手到擒来

对数组进行排序:

sorted_arr = np.sort(arr)
print(sorted_arr)

筛选满足条件的元素:

condition = arr > 3
filtered_arr = arr[condition]
print(filtered_arr)

10. 教程9:文件I/O:读写CSV等数据文件

NumPy内置函数可方便读取和保存CSV等数据文件:

data = np.genfromtxt('example.csv', delimiter=',')
np.savetxt('output.csv', data, delimiter=',')

这篇关于Python中的NumPy入门:科学计算与数组操作的10个基础教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957638

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e