一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)

本文主要是介绍一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💡💡💡本文摘要:一种基于YOLOv8改进的高精度小目标检测算法, 在红外小目标检测任务中实现暴力涨点;

💡💡💡创新点:

1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显;

2)引入Wasserstein Distance Loss提升小目标检测能力;

3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替;

原创组合创新,可直接使用至其他小目标检测任务;

💡💡💡实验结果:在红外小目标检测任务中mAP由原始的0.755 提升至0.901

  博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

《YOLOv9魔术师》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.小目标检测介绍

1.1 小目标定义

1)以物体检测领域的通用数据集COCO物体定义为例,小目标是指小于32×32个像素点(中物体是指32*32-96*96,大物体是指大于96*96);
2)在实际应用场景中,通常更倾向于使用相对于原图的比例来定义:物体标注框的长宽乘积,除以整个图像的长宽乘积,再开根号,如果结果小于3%,就称之为小目标;

1.2 难点

1)包含小目标的样本数量较少,这样潜在的让目标检测模型更关注中大目标的检测;

2)由小目标覆盖的区域更小,这样小目标的位置会缺少多样性。我们推测这使得小目标检测的在验证时的通用性变得很难;

3)anchor难匹配问题。这主要针对anchor-based方法,由于小目标的gt box和anchor都很小,anchor和gt box稍微产生偏移,IoU就变得很低,导致很容易被网络判断为negative sample;

4)它们不仅仅是小,而且是难,存在不同程度的遮挡、模糊、不完整现象;

等等难点

参考论文:小目标检测研究进展  

2. 小目标数据集

数据集下载地址:GitHub - YimianDai/sirst: A dataset constructed for single-frame infrared small target detection

Single-frame InfraRed Small Target 

数据集大小:427张,进行3倍数据增强得到1708张,最终训练集验证集测试集随机分配为8:1:1

 3.一种基于YOLOv8改进的高精度小目标检测算法 

1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显

2)引入Wasserstein Distance Loss提升小目标检测能力

3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替

YOLOv8_SPD-DynamicConv summary (fused): 199 layers, 5181707 parameters, 0 gradients, 32.2 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 6/6 [00:15<00:00,  2.58s/it]all        171        199      0.929      0.854      0.901      0.623

3.1  loss优化

Wasserstein Distance Loss

1)分析了 IoU 对微小物体位置偏差的敏感性,并提出 NWD 作为衡量两个边界框之间相似性的更好指标;

2)通过将NWD 应用于基于锚的检测器中的标签分配、NMS 和损失函数来设计强大的微小物体检测器;

3)提出的 NWD 可以显着提高流行的基于锚的检测器的 TOD 性能,它在 AI-TOD 数据集上的 Faster R-CNN 上实现了从 11.1% 到 17.6% 的性能提升;
 

​​

Wasserstein Distance Loss |   亲测在红外弱小目标检测涨点明显,map@0.5 从0.755提升至0.784 

Yolov8红外弱小目标检测(2):Wasserstein Distance Loss,助力小目标涨点_AI小怪兽的博客-CSDN博客

layers parametersGFLOPskb mAP50
yolov816830058438.161030.755
Wasserstein loss16830058438.161030.784

3.2  SPD-Conv

SPD-Conv由一个空间到深度(SPD)层和一个无卷积步长(Conv)层组成,可以应用于大多数CNN体系结构。我们从两个最具代表性的计算即使觉任务:目标检测和图像分类来解释这个新设计。然后,我们将SPD-Conv应用于YOLOv5和ResNet,创建了新的CNN架构,并通过经验证明,我们的方法明显优于最先进的深度学习模型,特别是在处理低分辨率图像和小物体等更困难的任务时。
​​

Yolov8红外弱小目标检测(4):SPD-Conv,低分辨率图像和小物体涨点明显_AI小怪兽的博客-CSDN博客

SPD-Conv |   亲测在红外弱小目标检测涨点明显,map@0.5 从0.755提升至0.875

layers parametersGFLOPskb mAP50
yolov816830058438.161030.755
yolov8_SPD174359873949.273940.875

3.3  DynamicConv

论文: https://arxiv.org/pdf/2306.14525v2.pdf

摘要:大规模视觉预训练显著提高了大型视觉模型的性能。然而,我们观察到低FLOPs的缺陷,即现有的低FLOPs模型不能从大规模的预训练中获益。在本文中,我们引入了一种新的设计原则,称为ParameterNet,旨在增加大规模视觉预训练模型中的参数数量,同时最小化FLOPs的增加。我们利用动态卷积将额外的参数合并到网络中,而FLOPs仅略有上升。ParameterNet方法允许低flops网络利用大规模视觉预训练。此外,我们将参数网的概念扩展到语言领域,在保持推理速度的同时增强推理结果。在大规模ImageNet-22K上的实验证明了该方案的优越性。例如ParameterNet-600M可以在ImageNet上实现比广泛使用的Swin Transformer更高的精度(81.6%对80.9%),并且具有更低的FLOPs (0.6G对4.5G)。在语言领域,使用ParameterNet增强的LLaMA- 1b比普通LLaMA准确率提高了2%

YOLOv8轻量化涨点改进: 卷积魔改 | DynamicConv | CVPR2024 ParameterNet,低计算量小模型也能从视觉大规模预训练中获益-CSDN博客

4.源码获取

关注下方名片点击关注,即可源码获取途径。  

这篇关于一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/949975

相关文章

自研四振子全向增益天线! 中兴问天BE6800Pro+路由器拆机和详细评测

《自研四振子全向增益天线!中兴问天BE6800Pro+路由器拆机和详细评测》中兴问天BE6800Pro+路由器已经上市,新品配备自研四振子全向增益天线,售价399元,国补到手339.15元,下面我们... 中兴问天BE6800Pro+路由器自上市以来,凭借其“旗舰性能,中端价格”的定位,以及搭载三颗自研芯片

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时