微软发布Phi-3 Mini,性能媲美GPT-3.5、Llama-3,可在手机端运行

2024-04-25 07:52

本文主要是介绍微软发布Phi-3 Mini,性能媲美GPT-3.5、Llama-3,可在手机端运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

微软发布了最新版的Phi系列小型语言模型(SLM) - Phi-3。这个系列包括3个不同参数规模的版本:Phi-3 Mini (38亿参数)、Phi-3 Small (70亿参数)和Phi-3 Medium (140亿参数)。

Phi系列模型是微软研究团队开发的小规模参数语言模型。从第一代Phi-1到第二代Phi-2,参数规模都控制在30亿以内,但在各种评测中都取得了出色的成绩。第三代Phi-3系列进一步扩大了参数规模,以期在性能上更进一步。

  • Huggingface模型下载:https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3

  • AI快站模型免费加速下载:https://aifasthub.com/models/microsoft

技术特点

Phi-3系列模型的创新主要体现在两个方面:

  • 训练数据集的设计 Phi-3模型是基于一个高达3.3万亿tokens的大规模数据集训练的。这个数据集结合了经过严格过滤的网络数据和高质量的合成数据,使得相对较小的模型也能取得出色的性能。

  • 安全性和稳健性的考虑 Phi-3模型经历了周密的安全评估和调整,包括有监督微调、直接偏好优化、自动化测试和红队评估等,确保了模型在安全性和可靠性方面符合微软的要求。

此外,Phi-3在支持更长上下文长度(4K和128K tokens)、针对不同平台的优化部署等方面也有创新。

性能表现

从评测结果来看,Phi-3系列模型的性能都非常出色。以30亿参数规模为例,Phi-3 Mini在MMLU、GSM8K和MT-Bench等基准测试中均优于同等或更大模型,与Mixtral 8x7B和GPT-3.5相媲美。

更大规模的Phi-3 Small和Phi-3 Medium也展现出更强大的能力,在一些测试指标上甚至超过了Mixtral 8x22B-MoE这样的大型模型。这说明Phi系列模型在小尺寸下也能取得出色的性能。

应用场景

Phi-3系列模型的小尺寸和高性能使它们非常适合部署在资源受限的设备和场景中,例如手机、嵌入式设备等。这使得它们能够在没有稳定网络连接的情况下,为用户提供高质量的对话服务和个性化内容。

微软的客户已经开始在农业等领域使用Phi-3模型,为缺乏稳定网络的农民提供便捷、经济的AI解决方案。未来我们也可以期待Phi-3模型被集成到智能手机、家用电器等设备中,为日常生活带来智能化的新体验。

未来展望

随着AI技术的不断进步,小型但功能强大的语言模型如Phi-3必将在各行各业中扮演重要角色。它们可以弥补大模型在部署成本、延迟和离线使用等方面的缺陷,为用户提供更贴近生活的智能化服务。

微软Phi系列模型的发展史也表明,通过优化训练数据和采用负责任的开发方法,即使在相对较小的模型规模下也能取得出色的性能。这为未来小型语言模型的应用开辟了广阔的前景。

总结

微软Phi-3系列小语言模型的推出,标志着小型模型在性能和应用场景上都取得了突破性进展。凭借创新的训练数据设计和周密的安全考量,Phi-3系列在各项评测中均取得了出色的成绩,媲美甚至超越了许多大型模型。

这种"小而强"的特点,使Phi-3系列模型非常适合部署在资源受限的设备和场景中,开启了离线AI应用的新篇章。随着技术的不断进步,我们有理由相信小型语言模型将在未来扮演越来越重要的角色,让智能技术真正融入到人们的日常生活中。

模型下载

Huggingface模型下载

https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3

AI快站模型免费加速下载

https://aifasthub.com/models/microsoft

这篇关于微软发布Phi-3 Mini,性能媲美GPT-3.5、Llama-3,可在手机端运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934104

相关文章

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Maven 依赖发布与仓库治理的过程解析

《Maven依赖发布与仓库治理的过程解析》:本文主要介绍Maven依赖发布与仓库治理的过程解析,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录Maven 依赖发布与仓库治理引言第一章:distributionManagement配置的工程化实践1

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加