CUDA 12.4文档3 内存层次异构变成计算能力

2024-04-12 00:44

本文主要是介绍CUDA 12.4文档3 内存层次异构变成计算能力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5.3 内存层次 Memory Hierarchy

CUDA线程在执行过程中可能会访问多个内存空间的数据,如图6所示。每个线程都有自己的私有本地内存。

每个线程块都有一个对块内所有线程可见的共享内存,并且其生命周期与块相同。线程块集群中的线程块可以对彼此的共享内存执行读、写和原子操作。所有线程都可以访问同一块全局内存。

此外,还有两个只读内存空间可以被所有线程访问:常量内存空间和纹理内存空间。全局内存、常量内存和纹理内存空间都针对不同的内存使用进行了优化(参见设备内存访问章节)。纹理内存也提供了不同的寻址模式,以及针对某些特定数据格式的数据过滤(参见纹理和表面内存章节)。

全局内存(global)、常量内存(constant)和纹理内存(texture)空间在相同应用程序的内核启动间都是持久的。

在这里插入图片描述

图6:内存层次

5.4 异构编程

如图7所示,CUDA编程模型假设CUDA线程在一个物理独立的设备上运行,该设备作为运行C++程序的主机的协处理器。例如,当内核在GPU上运行,而C++程序的其余部分在CPU上运行时,就是这种情况。

CUDA编程模型还假设主机和设备在DRAM中分别维护自己的独立内存空间,分别称为主机内存和设备内存。因此,一个程序通过调用CUDA运行时(在编程接口章节中描述)来管理内核可以看到的全局内存、常量内存和纹理内存空间。这包括设备内存的分配和释放,以及主机和设备内存之间的数据传输。

统一内存提供了管理内存,以连接主机和设备的内存空间。管理内存可以作为一个统一、连贯的内存映像,通过一个共享的地址空间,从系统中的所有CPU和GPU访问。这一能力使设备内存能被过度订阅,并且可以大大简化转换应用程序的任务,因为它消除了在主机和设备之间明确镜像数据的需要。请参阅统一内存编程章节来了解统一内存的介绍。
在这里插入图片描述

图7:异构编程

串行代码在主机上执行,而并行代码在设备上执行

5.5 异步SIMT编程模型

在CUDA编程模型中,线程是执行计算或内存操作的最低级别的抽象。从基于NVIDIA Ampere GPU架构的设备开始,CUDA编程模型通过异步编程模型为内存操作提供加速。异步编程模型定义了异步操作相对于CUDA线程的行为。

异步编程模型定义了异步屏障的行为,用于CUDA线程之间的同步。该模型还解释和定义了如何使用cuda::memcpy_async在GPU进行计算的同时异步地从全局内存移动数据。

5.5.1 异步操作

异步操作被定义为由CUDA线程启动并由另一个线程异步执行的操作。在一个规范的程序中,一个或多个CUDA线程与异步操作同步。启动异步操作的CUDA线程并不需要在同步线程中。

这样的异步线程(即作为线程)总是与启动异步操作的CUDA线程关联。异步操作使用同步对象来同步操作的完成。这样的同步对象可以由用户显式管理(例如,cuda::memcpy_async),也可以在库中隐式管理(例如,cooperative_groups::memcpy_async)。

同步对象可以是cuda::barriercuda::pipeline。这些对象在“异步屏障章节”和“使用cuda::pipeline进行异步数据复制章节”中有详细的解释。这些同步对象可以在不同的线程范围内使用。范围定义了可能使用同步对象与异步操作同步的线程集。下表定义了CUDA C++中可用的线程范围,以及可以与每个范围同步的线程。

Thread ScopeDescription
cuda::thread_scope::thread_scope_thread只有发起异步操作的CUDA线程才会同步。
cuda::thread_scope::thread_scope_block与初始化线程相同的线程块中的所有或任何CUDA线程都会同步。
cuda::thread_scope::thread_scope_device作为初始线程的同一GPU设备中的所有或任何CUDA线程都会同步。
cuda::thread_scope::thread_scope_system启动线程的同一系统中的所有或任何CUDA或CPU线程都会同步。

这些线程范围在CUDA标准C++库中作为标准C++的扩展来实现。

5.6 计算能力 Compute Capability

设备的计算能力用一个版本号表示,有时也被称为其“SM版本”。这个版本号标识了GPU硬件支持的特性,应用程序在运行时使用它来确定当前GPU上可用的硬件特性和/或指令。

计算能力由一个主要修订号X和一个次要修订号Y组成,表示为X.Y。

具有相同主修订号的设备具有相同的核心架构。主修订号为9的设备是基于NVIDIA Hopper GPU架构的,为8的设备是基于NVIDIA Ampere GPU架构的,为7的设备是基于Volta架构的,为6的设备是基于Pascal架构的,为5的设备是基于Maxwell架构的,为3的设备是基于Kepler架构的。

次修订号对应于对核心架构的增量改进,可能包括新的特性。

Turing是计算能力为7.5的设备的架构,是基于Volta架构的增量更新。

CUDA启用的GPU列表包含所有启用CUDA的设备及其计算能力。每种计算能力的技术规格在计算能力中提供。Tesla和Fermi架构从CUDA 7.0和CUDA 9.0开始分别不再支持。

特定GPU的计算能力版本不应与CUDA版本(例如,CUDA 7.5、CUDA 8、CUDA 9)混淆,后者是CUDA软件平台的版本。CUDA平台被应用开发者用来创建可以在许多代的GPU架构上运行的应用,包括尚未发明的未来GPU架构。虽然新版本的CUDA平台通常通过支持该架构的计算能力版本来增加对新GPU架构的本地支持,但新版本的CUDA平台通常也包括独立于硬件生成的软件特性。

这篇关于CUDA 12.4文档3 内存层次异构变成计算能力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895637

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空