信号处理--情绪分类数据集DEAP预处理(python版)

2024-03-28 07:44

本文主要是介绍信号处理--情绪分类数据集DEAP预处理(python版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

DEAP数据集是一个常用的情绪分类公共数据,在日常研究中经常被使用到。如何合理地预处理DEAP数据集,对于后端任务的成功与否,非常重要。本文主要介绍DEAP数据集的预处理流程。

工具

 图片来源:DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals

 DEAP数据集详细描述:https://www.eecs.qmul.ac.uk/mmv/datasets/deap/doc/tac_special_issue_2011.pdf

方法实现

加载.bdf文件+去除非脑电通道
	bdf_file_name = 's{:02d}.bdf'.format(subject_id)bdf_file_path = os.path.join(root_folder, bdf_file_name)print('Loading .bdf file {}'.format(bdf_file_path))raw = mne.io.read_raw_bdf(bdf_file_path, preload=True, verbose=False).load_data()ch_names = raw.ch_nameseeg_channels = ch_names[:N_EEG_electrodes]non_eeg_channels = ch_names[N_EEG_electrodes:]stim_ch_name = ch_names[-1]stim_channels = [ stim_ch_name ]
设置脑电电极规范
raw_copy = raw.copy()raw_stim = raw_copy.pick_channels(stim_channels)raw.pick_channels(eeg_channels)print('Setting montage with BioSemi32 electrode locations')biosemi_montage = mne.channels.make_standard_montage(kind='biosemi32', head_size=0.095)raw.set_montage(biosemi_montage)
带通滤波器(4-45Hz),陷波滤波器(50Hz)
	print('Applying notch filter (50Hz) and bandpass filter (4-45Hz)')raw.notch_filter(np.arange(50, 251, 50), n_jobs=1, fir_design='firwin')raw.filter(4, 45, fir_design='firwin')
脑电通道相对于均值重标定
	# Average reference. This is normally added by default, but can also be added explicitly.print('Re-referencing all electrodes to the common average reference')raw.set_eeg_reference()
获取事件标签
print('Getting events from the status channel')events = mne.find_events(raw_stim, stim_channel=stim_ch_name, verbose=True)if subject_id<=23:# Subject 1-22 and Subjects 23-28 have 48 channels.# Subjects 29-32 have 49 channels.# For Subjects 1-22 and Subject 23, the stimuli channel has the name 'Status'# For Subjects 24-28, the stimuli channel has the name ''# For Subjects 29-32, the stimuli channels have the names '-0' and '-1'passelse:# The values of the stimuli channel have to be changed for Subjects 24-32# Trigger channel has a non-zero initial value of 1703680 (consider using initial_event=True to detect this event)events[:,2] -= 1703680 # subtracting initial valueevents[:,2] = events[:,2] % 65536 # getting modulo with 65536print('')event_IDs = np.unique(events[:,2])for event_id in event_IDs:col = events[:,2]print('Event ID {} : {:05}'.format(event_id, np.sum( 1.0*(col==event_id) ) ) )
获取事件对应信号
inds_new_trial = np.where(events[:,2] == 4)[0]events_new_trial = events[inds_new_trial,:]baseline = (0, 0)print('Epoching the data, into [-5sec, +60sec] epochs')epochs = mne.Epochs(raw, events_new_trial, event_id=4, tmin=-5.0, tmax=60.0, picks=eeg_channels, baseline=baseline, preload=True)
ICA去除伪迹
print('Fitting ICA to the epoched data, using {} ICA components'.format(N_ICA))ica = ICA(n_components=N_ICA, method='fastica', random_state=23)ica.fit(epochs)ICA_model_file = os.path.join(ICA_models_folder, 's{:02}_ICA_model.pkl'.format(subject_id))with open(ICA_model_file, 'wb') as pkl_file:pickle.dump(ica, pkl_file)# ica.plot_sources(epochs)print('Plotting ICA components')fig = ica.plot_components()cnt = 1for fig_x in fig:print(fig_x)fig_ICA_path = os.path.join(ICA_components_folder, 's{:02}_ICA_components_{}.png'.format(subject_id, cnt))fig_x.savefig(fig_ICA_path)cnt += 1# Inspect frontal channels to check artifact removal # ica.plot_overlay(raw, picks=['Fp1'])# ica.plot_overlay(raw, picks=['Fp2'])# ica.plot_overlay(raw, picks=['AF3'])# ica.plot_overlay(raw, picks=['AF4'])N_excluded_channels = len(ica.exclude)print('Excluding {:02} ICA component(s): {}'.format(N_excluded_channels, ica.exclude))epochs_clean = ica.apply(epochs.copy())#############################print('Plotting PSD of epoched data')fig = epochs_clean.plot_psd(fmin=4, fmax=45, area_mode='range', average=False, picks=eeg_channels, spatial_colors=True)fig_PSD_path = os.path.join(PSD_folder, 's{:02}_PSD.png'.format(subject_id))fig.savefig(fig_PSD_path)print('Saving ICA epoched data as .pkl file')mneraw_pkl_path = os.path.join(mneraw_as_pkl_folder, 's{:02}.pkl'.format(subject_id))with open(mneraw_pkl_path, 'wb') as pkl_file:pickle.dump(epochs_clean, pkl_file)epochs_clean_copy = epochs_clean.copy()
数据降采样和保存
print('Downsampling epoched data to 128Hz')epochs_clean_downsampled = epochs_clean_copy.resample(sfreq=128.0)print('Plotting PSD of epoched downsampled data')fig = epochs_clean_downsampled.plot_psd(fmin=4, fmax=45, area_mode='range', average=False, picks=eeg_channels, spatial_colors=True)fig_PSD_path = os.path.join(PSD_folder, 's{:02}_PSD_downsampled.png'.format(subject_id))fig.savefig(fig_PSD_path)data = epochs_clean.get_data()data_downsampled = epochs_clean_downsampled.get_data()print('Original epoched data shape: {}'.format(data.shape))print('Downsampled epoched data shape: {}'.format(data_downsampled.shape))###########################################EEG_channels_table = pd.read_excel(DEAP_EEG_channels_xlsx_path)EEG_channels_geneva = EEG_channels_table['Channel_name_Geneva'].valueschannel_pick_indices = []print('\nPreparing EEG channel reordering to comply with the Geneva order')for (geneva_ch_index, geneva_ch_name) in zip(range(N_EEG_electrodes), EEG_channels_geneva):bdf_ch_index = eeg_channels.index(geneva_ch_name)channel_pick_indices.append(bdf_ch_index)print('Picking source (raw) channel #{:02} to fill target (npy) channel #{:02} | Electrode position: {}'.format(bdf_ch_index + 1, geneva_ch_index + 1, geneva_ch_name))ratings = pd.read_csv(ratings_csv_path)is_subject =  (ratings['Participant_id'] == subject_id)ratings_subj = ratings[is_subject]trial_pick_indices = []print('\nPreparing EEG trial reordering, from presentation order, to video (Experiment_id) order')for i in range(N_trials):exp_id = i+1is_exp = (ratings['Experiment_id'] == exp_id)trial_id = ratings_subj[is_exp]['Trial'].values[0]trial_pick_indices.append(trial_id - 1)print('Picking source (raw) trial #{:02} to fill target (npy) trial #{:02} | Experiment_id: {:02}'.format(trial_id, exp_id, exp_id))# Store clean and reordered data to numpy arrayepoch_duration = data_downsampled.shape[-1]data_npy = np.zeros((N_trials, N_EEG_electrodes, epoch_duration))print('\nStoring the final EEG data in a numpy array of shape {}'.format(data_npy.shape))for trial_source, trial_target in zip(trial_pick_indices, range(N_trials)):data_trial = data_downsampled[trial_source]data_trial_reordered_channels = data_trial[channel_pick_indices,:]data_npy[trial_target,:,:] = data_trial_reordered_channels.copy()print('Saving the final EEG data in a .npy file')np.save(npy_path, data_npy)print('Raw EEG has been filtered, common average referenced, epoched, artifact-rejected, downsampled, trial-reordered and channel-reordered.')print('Finished.')

图片来源: Blog - Ayan's Blog

代码获取

后台私信,请注明文章名称;

相关项目和代码问题,欢迎交流。

这篇关于信号处理--情绪分类数据集DEAP预处理(python版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854927

相关文章

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr