信号处理--情绪分类数据集DEAP预处理(python版)

2024-03-28 07:44

本文主要是介绍信号处理--情绪分类数据集DEAP预处理(python版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

DEAP数据集是一个常用的情绪分类公共数据,在日常研究中经常被使用到。如何合理地预处理DEAP数据集,对于后端任务的成功与否,非常重要。本文主要介绍DEAP数据集的预处理流程。

工具

 图片来源:DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals

 DEAP数据集详细描述:https://www.eecs.qmul.ac.uk/mmv/datasets/deap/doc/tac_special_issue_2011.pdf

方法实现

加载.bdf文件+去除非脑电通道
	bdf_file_name = 's{:02d}.bdf'.format(subject_id)bdf_file_path = os.path.join(root_folder, bdf_file_name)print('Loading .bdf file {}'.format(bdf_file_path))raw = mne.io.read_raw_bdf(bdf_file_path, preload=True, verbose=False).load_data()ch_names = raw.ch_nameseeg_channels = ch_names[:N_EEG_electrodes]non_eeg_channels = ch_names[N_EEG_electrodes:]stim_ch_name = ch_names[-1]stim_channels = [ stim_ch_name ]
设置脑电电极规范
raw_copy = raw.copy()raw_stim = raw_copy.pick_channels(stim_channels)raw.pick_channels(eeg_channels)print('Setting montage with BioSemi32 electrode locations')biosemi_montage = mne.channels.make_standard_montage(kind='biosemi32', head_size=0.095)raw.set_montage(biosemi_montage)
带通滤波器(4-45Hz),陷波滤波器(50Hz)
	print('Applying notch filter (50Hz) and bandpass filter (4-45Hz)')raw.notch_filter(np.arange(50, 251, 50), n_jobs=1, fir_design='firwin')raw.filter(4, 45, fir_design='firwin')
脑电通道相对于均值重标定
	# Average reference. This is normally added by default, but can also be added explicitly.print('Re-referencing all electrodes to the common average reference')raw.set_eeg_reference()
获取事件标签
print('Getting events from the status channel')events = mne.find_events(raw_stim, stim_channel=stim_ch_name, verbose=True)if subject_id<=23:# Subject 1-22 and Subjects 23-28 have 48 channels.# Subjects 29-32 have 49 channels.# For Subjects 1-22 and Subject 23, the stimuli channel has the name 'Status'# For Subjects 24-28, the stimuli channel has the name ''# For Subjects 29-32, the stimuli channels have the names '-0' and '-1'passelse:# The values of the stimuli channel have to be changed for Subjects 24-32# Trigger channel has a non-zero initial value of 1703680 (consider using initial_event=True to detect this event)events[:,2] -= 1703680 # subtracting initial valueevents[:,2] = events[:,2] % 65536 # getting modulo with 65536print('')event_IDs = np.unique(events[:,2])for event_id in event_IDs:col = events[:,2]print('Event ID {} : {:05}'.format(event_id, np.sum( 1.0*(col==event_id) ) ) )
获取事件对应信号
inds_new_trial = np.where(events[:,2] == 4)[0]events_new_trial = events[inds_new_trial,:]baseline = (0, 0)print('Epoching the data, into [-5sec, +60sec] epochs')epochs = mne.Epochs(raw, events_new_trial, event_id=4, tmin=-5.0, tmax=60.0, picks=eeg_channels, baseline=baseline, preload=True)
ICA去除伪迹
print('Fitting ICA to the epoched data, using {} ICA components'.format(N_ICA))ica = ICA(n_components=N_ICA, method='fastica', random_state=23)ica.fit(epochs)ICA_model_file = os.path.join(ICA_models_folder, 's{:02}_ICA_model.pkl'.format(subject_id))with open(ICA_model_file, 'wb') as pkl_file:pickle.dump(ica, pkl_file)# ica.plot_sources(epochs)print('Plotting ICA components')fig = ica.plot_components()cnt = 1for fig_x in fig:print(fig_x)fig_ICA_path = os.path.join(ICA_components_folder, 's{:02}_ICA_components_{}.png'.format(subject_id, cnt))fig_x.savefig(fig_ICA_path)cnt += 1# Inspect frontal channels to check artifact removal # ica.plot_overlay(raw, picks=['Fp1'])# ica.plot_overlay(raw, picks=['Fp2'])# ica.plot_overlay(raw, picks=['AF3'])# ica.plot_overlay(raw, picks=['AF4'])N_excluded_channels = len(ica.exclude)print('Excluding {:02} ICA component(s): {}'.format(N_excluded_channels, ica.exclude))epochs_clean = ica.apply(epochs.copy())#############################print('Plotting PSD of epoched data')fig = epochs_clean.plot_psd(fmin=4, fmax=45, area_mode='range', average=False, picks=eeg_channels, spatial_colors=True)fig_PSD_path = os.path.join(PSD_folder, 's{:02}_PSD.png'.format(subject_id))fig.savefig(fig_PSD_path)print('Saving ICA epoched data as .pkl file')mneraw_pkl_path = os.path.join(mneraw_as_pkl_folder, 's{:02}.pkl'.format(subject_id))with open(mneraw_pkl_path, 'wb') as pkl_file:pickle.dump(epochs_clean, pkl_file)epochs_clean_copy = epochs_clean.copy()
数据降采样和保存
print('Downsampling epoched data to 128Hz')epochs_clean_downsampled = epochs_clean_copy.resample(sfreq=128.0)print('Plotting PSD of epoched downsampled data')fig = epochs_clean_downsampled.plot_psd(fmin=4, fmax=45, area_mode='range', average=False, picks=eeg_channels, spatial_colors=True)fig_PSD_path = os.path.join(PSD_folder, 's{:02}_PSD_downsampled.png'.format(subject_id))fig.savefig(fig_PSD_path)data = epochs_clean.get_data()data_downsampled = epochs_clean_downsampled.get_data()print('Original epoched data shape: {}'.format(data.shape))print('Downsampled epoched data shape: {}'.format(data_downsampled.shape))###########################################EEG_channels_table = pd.read_excel(DEAP_EEG_channels_xlsx_path)EEG_channels_geneva = EEG_channels_table['Channel_name_Geneva'].valueschannel_pick_indices = []print('\nPreparing EEG channel reordering to comply with the Geneva order')for (geneva_ch_index, geneva_ch_name) in zip(range(N_EEG_electrodes), EEG_channels_geneva):bdf_ch_index = eeg_channels.index(geneva_ch_name)channel_pick_indices.append(bdf_ch_index)print('Picking source (raw) channel #{:02} to fill target (npy) channel #{:02} | Electrode position: {}'.format(bdf_ch_index + 1, geneva_ch_index + 1, geneva_ch_name))ratings = pd.read_csv(ratings_csv_path)is_subject =  (ratings['Participant_id'] == subject_id)ratings_subj = ratings[is_subject]trial_pick_indices = []print('\nPreparing EEG trial reordering, from presentation order, to video (Experiment_id) order')for i in range(N_trials):exp_id = i+1is_exp = (ratings['Experiment_id'] == exp_id)trial_id = ratings_subj[is_exp]['Trial'].values[0]trial_pick_indices.append(trial_id - 1)print('Picking source (raw) trial #{:02} to fill target (npy) trial #{:02} | Experiment_id: {:02}'.format(trial_id, exp_id, exp_id))# Store clean and reordered data to numpy arrayepoch_duration = data_downsampled.shape[-1]data_npy = np.zeros((N_trials, N_EEG_electrodes, epoch_duration))print('\nStoring the final EEG data in a numpy array of shape {}'.format(data_npy.shape))for trial_source, trial_target in zip(trial_pick_indices, range(N_trials)):data_trial = data_downsampled[trial_source]data_trial_reordered_channels = data_trial[channel_pick_indices,:]data_npy[trial_target,:,:] = data_trial_reordered_channels.copy()print('Saving the final EEG data in a .npy file')np.save(npy_path, data_npy)print('Raw EEG has been filtered, common average referenced, epoched, artifact-rejected, downsampled, trial-reordered and channel-reordered.')print('Finished.')

图片来源: Blog - Ayan's Blog

代码获取

后台私信,请注明文章名称;

相关项目和代码问题,欢迎交流。

这篇关于信号处理--情绪分类数据集DEAP预处理(python版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854927

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下