信号处理--基于DEAP数据集的情绪分类的典型深度学习模型构建

本文主要是介绍信号处理--基于DEAP数据集的情绪分类的典型深度学习模型构建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

本实验采用DEAP情绪数据集进行数据分类任务。使用了三种典型的深度学习网络:2D 卷积神经网络;1D卷积神经网络+GRU; LSTM网络。

工具

数据集

DEAP数据

图片来源: DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals

方法实现

2D-CNN网络
加载必要库函数
import pandas as pd
import keras.backend as K
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.models import Sequential
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from tensorflow.keras.utils import to_categorical 
from keras.layers import Flatten
from keras.layers import Dense
import numpy as np
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras import backend as K
from keras.models import Model
import timeit
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution1D, MaxPooling1D, ZeroPadding1D
from tensorflow.keras.optimizers import SGD
#import cv2, numpy as np
import warnings
warnings.filterwarnings('ignore')
加载DEAP数据集

data_training = []
label_training = []
data_testing = []
label_testing = []for subjects in subjectList:with open('/content/drive/My Drive/leading_ai/try/s' + subjects + '.npy', 'rb') as file:sub = np.load(file,allow_pickle=True)for i in range (0,sub.shape[0]):if i % 5 == 0:data_testing.append(sub[i][0])label_testing.append(sub[i][1])else:data_training.append(sub[i][0])label_training.append(sub[i][1])np.save('/content/drive/My Drive/leading_ai/data_training', np.array(data_training), allow_pickle=True, fix_imports=True)
np.save('/content/drive/My Drive/leading_ai/label_training', np.array(label_training), allow_pickle=True, fix_imports=True)
print("training dataset:", np.array(data_training).shape, np.array(label_training).shape)np.save('/content/drive/My Drive/leading_ai/data_testing', np.array(data_testing), allow_pickle=True, fix_imports=True)
np.save('/content/drive/My Drive/leading_ai/label_testing', np.array(label_testing), allow_pickle=True, fix_imports=True)
print("testing dataset:", np.array(data_testing).shape, np.array(label_testing).shape)
 数据标准化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
定义训练超参数
batch_size = 256
num_classes = 10
epochs = 200
input_shape=(x_train.shape[1], 1)
 定义模型
from keras.layers import Convolution1D, ZeroPadding1D, MaxPooling1D, BatchNormalization, Activation, Dropout, Flatten, Dense
from keras.regularizers import l2model = Sequential()
intput_shape=(x_train.shape[1], 1)
model.add(Conv1D(164, kernel_size=3,padding = 'same',activation='relu', input_shape=input_shape))
model.add(BatchNormalization())
model.add(MaxPooling1D(pool_size=(2)))
model.add(Conv1D(164,kernel_size=3,padding = 'same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling1D(pool_size=(2)))
model.add(Conv1D(82,kernel_size=3,padding = 'same', activation='relu'))
model.add(MaxPooling1D(pool_size=(2)))
model.add(Flatten())
model.add(Dense(82, activation='tanh'))
model.add(Dropout(0.2))
model.add(Dense(42, activation='tanh'))
model.add(Dropout(0.2))
model.add(Dense(21, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
model.summary()
模型配置和训练
model.compile(loss=keras.losses.categorical_crossentropy,optimizer='adam',metrics=['accuracy'])history=model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,  verbose=1,validation_data=(x_test,y_test))

 

模型测试集验证
score = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

 

模型训练过程可视化
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

 

 

模型测试集分类混沌矩阵
cmatrix=confusion_matrix(y_test1, y_pred)import seaborn as sns
figure = plt.figure(figsize=(8, 8))
sns.heatmap(cmatrix, annot=True,cmap=plt.cm.Blues)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

 

模型测试集分类report
from sklearn import metrics
y_pred = np.around(model.predict(x_test))
print(metrics.classification_report(y_test,y_pred))

 

1D-CNN+GRU网络
数据预处理

必要库函数加载,数据加载预处理,同2D CNN一样,不在赘述。

!pip install git+https://github.com/forrestbao/pyeeg.git
import numpy as np
import pyeeg as pe
import pickle as pickle
import pandas as pd
import matplotlib.pyplot as plt
import mathimport os
import time
import timeit
import keras
import keras.backend as K
from keras.models import Model
from keras.layers import Flatten
from keras.datasets import mnist
from keras.models import Sequential
from sklearn.preprocessing import normalize
from tensorflow.keras.optimizers import SGD
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.convolutional import ZeroPadding1D
from tensorflow.keras.utils import to_categorical
from keras.layers import Dense, Dropout, Flatten,GRUimport warnings
warnings.filterwarnings('ignore')
模型搭建
from keras.layers import Convolution1D, ZeroPadding1D, MaxPooling1D, BatchNormalization, Activation, Dropout, Flatten, Dense,GRU,LSTM
from keras.regularizers import l2from keras.models import load_model
from keras.layers import Lambda
import tensorflow as tfmodel_2 = Sequential()model_2.add(Conv1D(128, 3, activation='relu', input_shape=input_shape))
model_2.add(MaxPooling1D(pool_size=2))
model_2.add(Dropout(0.2))model_2.add(Conv1D(128, 3,  activation='relu'))
model_2.add(MaxPooling1D(pool_size=2))
model_2.add(Dropout(0.2))model_2.add(GRU(units = 256, return_sequences=True))  
model_2.add(Dropout(0.2))model_2.add(GRU(units = 32))
model_2.add(Dropout(0.2))model_2.add(Flatten())model_2.add(Dense(units = 128, activation='relu'))
model_2.add(Dropout(0.2))model_2.add(Dense(units = num_classes))
model_2.add(Activation('softmax'))model_2.summary()

 

模型编译和训练
model_2.compile(optimizer ="adam",loss = 'categorical_crossentropy',metrics=["accuracy"]
)history_2 = model_2.fit(x_train, y_train,epochs=epochs,batch_size=batch_size,verbose=1,validation_data=(x_test, y_test),callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',patience=20,restore_best_weights=True)]
)

 模型训练过程可视化
# summarize history for accuracy
plt.plot(history_2.history['accuracy'],color='green',linewidth=3.0)
plt.plot(history_2.history['val_accuracy'],color='red',linewidth=3.0)
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')plt.savefig("/content/drive/My Drive/GRU/model accuracy.png")
plt.show()# summarize history for loss
plt.plot(history_2.history['loss'],color='green',linewidth=2.0)
plt.plot(history_2.history['val_loss'],color='red',linewidth=2.0)
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')plt.savefig("/content/drive/My Drive/GRU/model loss.png")
plt.show()

 模型测试集分类混沌矩阵和分类report

LSTM网络
数据加载/预处理

同上

模型搭建和训练
  from keras.regularizers import l2from keras.layers import Bidirectionalfrom keras.layers import LSTMmodel = Sequential()model.add(Bidirectional(LSTM(164, return_sequences=True), input_shape=input_shape))model.add(Dropout(0.6))model.add(LSTM(units = 256, return_sequences = True))  model.add(Dropout(0.6))model.add(LSTM(units = 82, return_sequences = True))  model.add(Dropout(0.6))model.add(LSTM(units = 82, return_sequences = True))  model.add(Dropout(0.4))model.add(LSTM(units = 42))model.add(Dropout(0.4))model.add(Dense(units = 21))model.add(Activation('relu'))model.add(Dense(units = num_classes))model.add(Activation('softmax'))model.compile(optimizer ="adam", loss =keras.losses.categorical_crossentropy,metrics=["accuracy"])model.summary()m=model.fit(x_train, y_train,epochs=200,batch_size=256,verbose=1,validation_data=(x_test, y_test))

模型训练过程可视化
import matplotlib.pyplot as plt
print(m.history.keys())
# summarize history for accuracy
plt.plot(m.history['accuracy'],color='green',linewidth=3.0)
plt.plot(m.history['val_accuracy'],color='red',linewidth=3.0)plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')plt.savefig("./Bi- LSTM/model accuracy.png")
plt.show()import imageio
plt.plot(m.history['loss'],color='green',linewidth=2.0)
plt.plot(m.history['val_loss'],color='red',linewidth=2.0)plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')#to save the image
plt.savefig("./Bi- LSTM/model loss.png")
plt.show()

 

 

模型测试集分类性能

代码获取

后台私信,请注明文章题目(数据需要自己下载和处理)

相关项目和代码问题,欢迎交流。

这篇关于信号处理--基于DEAP数据集的情绪分类的典型深度学习模型构建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851361

相关文章

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

Java如何根据word模板导出数据

《Java如何根据word模板导出数据》这篇文章主要为大家详细介绍了Java如何实现根据word模板导出数据,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... pom.XML文件导入依赖 <dependency> <groupId>cn.afterturn</groupId>