OpenCV学习笔记(十一)——利用Sobel算子计算梯度

2024-03-24 07:04

本文主要是介绍OpenCV学习笔记(十一)——利用Sobel算子计算梯度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sobel算子是基于一阶导数的离散差分算子,其中Sobel对于像素值的变化是十分敏感的,在进行边缘检测的时候,Sobel算子常用于对周围像素的重要性进行检测。

Sobel算子包括检验水平方向的算子G_{x}和检测竖直方向的算子G_{y}

计算机梯度值的操作如下:

  1. G_{x}算子在图像上进行卷积操作检测水平边缘。公式为:G_{x}=A*g_{x}
  2. G_{y}算子在图像上进行卷积操作检测垂直边缘。 公式为:G_{y}=A*g_{y}
  3. 结合水平方向和垂直方向计算每一个梯度点的数值,公式为:G=|G_{x}|+|C_{y}|

在OpenCV中可以cv2.Sobel()来计算图像梯度值,其中格式为cv2.Sobel(src,depth,dx,dy,size),其中第一个参数src表示的是需要处理的图像;第二个参数depth表示的是图像的深度;第三个参数dx和第四个参数dy分别选择水平和竖直方向;size表示的是Sobel算子的大小。

下面有这么一张图像:

(1)水平方向梯度计算

对上图计算进行卷积操作检测水平方向边缘:

import cv2
import matplotlib.pyplot as plt
import numpy as npimage=cv2.imread(r'D:/Photo/3.png')
sobelx_image=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv2.imshow('sobelx',sobelx_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:
 

在上图中会把负值截断为0,因此我们需要添加一处操作:

sobelx_image=cv2.convertScaleAbs(sobelx_image)
#取绝对值操作

完整代码为:

import cv2
import matplotlib.pyplot as plt
import numpy as npimage=cv2.imread(r'D:/Photo/3.png')
sobelx_image=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx_image=cv2.convertScaleAbs(sobelx_image)
cv2.imshow('sobelx',sobelx_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

对于存在梯度的像素来说,如果两个图像存在差异,那么右边减去左边的不为0,则有可能会正数或者有可能为负数,因此需要取绝对值操作,此时像素点为一个大于0的正数,像素点部位不是纯黑色。

(2)竖直方向梯度计算

 同理可以对竖直方向进行梯度计算,代码为:

import cv2
import matplotlib.pyplot as plt
import numpy as npimage=cv2.imread(r'D:/Photo/3.png')
sobelx_image=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
cv2.imshow('sobelx',sobelx_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

 运行结果如下所示:

(3)完整的梯度计算

完整的梯度计算需要分别将水平方向和垂直方向分别乘上各自权值再求和,例如将权值设置为0.5:

sobel=cv2.addWeighted(sobelx_image,0.5,sobely_image,0.5,0)
cv2.imshow('sobel',sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

为什么不直接使用 sobel_image=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)呢?因为在OpenCV中如果直接设置dx和dy的方向均为1的话,那么可能会添加重影,叠加效果不是很好,因此不建议。

这篇关于OpenCV学习笔记(十一)——利用Sobel算子计算梯度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840803

相关文章

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和