Python中经纬度距离计算的实现方式

2025-08-11 22:50

本文主要是介绍Python中经纬度距离计算的实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj...

python中计算经纬度距离可以使用geopy(Vincenty、Karney)、Haversine、pyproj(椭球模型投影计算)、平面近似法(小范围快速估算)等。而针对中国加密坐标系(如GCJ-02/BD-09)也可以使用coord-convert工具转换为WGS84。

以下是对应方法的示例。

一、基本方法

1. 使用geopy库(推荐)

geopy 提供了多种距离计算方式(包括Haversine、Vincenty、Karney),支持WGS84椭球模型。

安装

pip install geopy

示例代码

from geopy.distance import geodesic, great_circle

# 定义两点(纬度, 经度)
point_a = (39.9042, 116.4074)  # 北京
point_b = (31.2304, 121.4737)  # 上海

# 方法1:
# geopy 1.x 版本 Vincenty(默认,高精度)
# geopy 2.0 版本 Karney
distance_karney = geodesic(point_a, point_b).km
print(f"karney距离: {distance_karney:.2f} km")

# 方法2:大圆距离(Haversine,球面近似)
distance_greatjavascript_circle = great_circle(point_a, point_b).km
print(f"大圆距离: {distance_great_circle:.2f} km")

输出:

Karney距离: 1065.85 km
大圆距离: 1067.31 km

说明:
geodesic 2.0版本 使用的是Karney算法,1.x 版本使用的是Vincenty算法。
great_circle 使用Haversine公式,假设地球为完美球体。实际地球是椭球体,其误差范围(通常为 0.5% 左右)。

2. 手动实现 Haversine 公式

适合无需外部库的场景。

示例代码

import math


def haversine(lat1, lon1, lat2, lon2):
    R = 6371  # 地球半径(km)
    phi1, phi2 = math.radians(lat1), math.radians(lat2)
    delta_phi = math.radians(lat2 - lat1)
    delta_lambda = math.radians(lon2 - lon1)

    a = math.sin(delta_phi / 2) ** 2 + \
        math.cos(phi1) * math.cos(phi2) * math.sin(delta_lambda / 2) ** 2
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
    return R * c

distance = haversine(39.9042, 116.4074, 31.2304, 121.4737)
print(f"Haversine距离: {distance:.2f} km")

输出:

Haversine距离: 1067.31 km

注意:与geopygreat_circle结果一致。

3. 使用pyproj进行投影坐标系计算

适合需要平面坐标的高精度场景(如UTM投影)。

安装

pip install pyproj

示例代码

from pyproj import Geod

# 使用WGS84椭球
geod = Geod(ellps="WGS84")

# 计算距离和方位角
# 参数顺序:起点经度、起点纬度、终点经度、终点纬度
_, _, distance = geod.inv(116.4074, 39.9042, 121.4737, 31.2304)
print(f"pyproj椭球距离: {distance / 1000:.2f} km")

输出:

pyproj椭球距离: 1065.85 km

说明:

  • geod.inv 返回前两个值是方位角,第三个是距离(米)。
  • 结果与geopy的Vincenty一致。

4. 平面近似法(小范围适用)

适用于城市内短距离快速估算。

import math

def flat_approximatiowww.chinasem.cnn(lat1, lon1, lat2, lon2):
    R = 6371  # 地球半径(km)
    avg_lat = math.radians((lat1 + lat2) / 2)
    dx = math.radians(lon2 - lon1) * math.cos(avg_lat)
    dy = math.radians(lat2 - lat1)
    return R * math.sqrt(dx**2 + dy**2)

# 示例(北京天安门到北京西站)
distance = flat_approximation(39.9042, 116.4074, 39.8946, 116.3224)
print(f"平面近似距离: {distance:.2f} km")

输出:

平面近似距离: 7.33 km

注意:适用于距离 < 10 km,实际误差还取决于纬度,高纬度地区误差更大。

二、不同坐标系的影响

常见坐标系

许多国家会对地理信息进行加密或偏移,如中国的GCJ-02或BD-09,计算距离前需确保所有坐标点在同一坐标系下,否则结果会有偏差。

可以使用库(如coord-converphpt)将GCJ-02或BD-09坐标转换为WGS84,但不同坐标系之间的转换是不可逆的,多次转换可能会导致精度损失。

  • WGS84(国际标准GPS坐标系):未加密的地心坐标系,高精度。
  • GCJ-02(火星坐标系):基于WGS84通过非线性算法加入随机偏移。
  • BD-09(百度坐标系):在GCJ-02基础上二次加密的坐标系。

coord-convert坐标系转换

安装

pip install coord-convert

示例代码

from coord_convert import transform

# GCJ-02 转 WGS84
gcj_lon, gcj_lat = 116.404, 39.915  # 北京天安门(GCJ-02)
wgs_lon, wgs_lat = transform.gcj2wgs(gcj_lon, gcj_lat)
print(f"WGS84坐标: {wgs_lon:.6f}, {wgs_lat:.6f}")
# WGS84坐标: 116.397756, 39.913596

# BD-09 转 WGS84
bd_lon, bd_lat = 116.410, 39.921  # 北京天安门(BD-09)
wgs_lon, wgs_lat = trwww.chinasem.cnansform.bd2wgs(bd_lon, bd_lat)
print(f"WGS84坐标: {wgs_lon:.6f}, {wgs_lat:.6f}")
# WGS84坐标: 116.397387, 39.913258

坐标系转换方法

函数说明
transform.wgs2gcj(lon, lat)WGS84 → GCJ-02
transform.gcj2wgs(lon, lat)GCJ-02 → WGS84
transform.gcj2bd(lon, lat)GCJ-02 → BD-09
transform.bd2gcj(lon, lat)BD-09 → GCJ-02
transform.bd2wgs(lon, lat)BD-09 &rarrjavascript; WGS84
transform.wgs2bd(lon, lat)WGS84 → BD-09

三、方法对比总结

方法精度适用场景依赖库
geopy.geodesic毫米级全球范围,高精度geopy
geopy.great_circle中等快速球面估算geopy
Haversine手动实现中等无库依赖
pyproj.Geod毫米级复杂椭球模型计算pyproj
平面近似极小范围(城市内)

四、如何选择?

  • 通用场景:直接使用 geopy.geodesic(平衡精度和易用性)。
  • 学术与工程:需要椭球模型时用 pyproj
  • 轻量级需求:手动Haversine或无库平面近似。

五、总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持China编程(www.chinasem.cn)。

这篇关于Python中经纬度距离计算的实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155685

相关文章

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理

Python WSGI HTTP服务器Gunicorn使用详解

《PythonWSGIHTTP服务器Gunicorn使用详解》Gunicorn是Python的WSGI服务器,用于部署Flask/Django应用,性能高且稳定,支持多Worker类型与配置,可处... 目录一、什么是 Gunicorn?二、为什么需要Gunicorn?三、安装Gunicorn四、基本使用启

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

python urllib模块使用操作方法

《pythonurllib模块使用操作方法》Python提供了多个库用于处理URL,常用的有urllib、requests和urlparse(Python3中为urllib.parse),下面是这些... 目录URL 处理库urllib 模块requests 库urlparse 和 urljoin编码和解码

使用Python提取PDF大纲(书签)的完整指南

《使用Python提取PDF大纲(书签)的完整指南》PDF大纲(Outline)​​是PDF文档中的导航结构,通常显示在阅读器的侧边栏中,方便用户快速跳转到文档的不同部分,大纲通常以层级结构组织,包含... 目录一、PDF大纲简介二、准备工作所需工具常见安装问题三、代码实现完整代码核心功能解析四、使用效果控

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin

Spring Security重写AuthenticationManager实现账号密码登录或者手机号码登录

《SpringSecurity重写AuthenticationManager实现账号密码登录或者手机号码登录》本文主要介绍了SpringSecurity重写AuthenticationManage... 目录一、创建自定义认证提供者CustomAuthenticationProvider二、创建认证业务Us

MySQL配置多主复制的实现步骤

《MySQL配置多主复制的实现步骤》多主复制是一种允许多个MySQL服务器同时接受写操作的复制方式,本文就来介绍一下MySQL配置多主复制的实现步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 环境准备2. 配置每台服务器2.1 修改每台服务器的配置文件3. 安装和配置插件4. 启动组复制4.

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库