使用Python和OpenCV库实现实时颜色识别系统

2025-06-16 15:50

本文主要是介绍使用Python和OpenCV库实现实时颜色识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红...

一、引言

今天我将介绍一个使用python和OpenCV库实现的实时颜色识别系统。这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红、黄、绿、蓝)。这种技术在机器人视觉、自动化检测和交互式应用中有着广泛的应用前景。

二、系统概述

该系统主要包含以下几个功能:

  • 实时视频捕捉
  • 在视频帧中划定特定检测区域
  • 将检测区域转换为HSV色彩空间
  • 分析区域内的色调(H)值
  • 根据H值范围判断颜色类型
  • 实时显示结果

三、代码解析

1. 导入库

import cv2

我们只需要导入OpenCV库,它提供了强大的计算机视觉功能,包括图像处理和视频捕捉。

2. 颜色识别函数

def get_color(img):
    H = []
    color_name = None
    img = cv2.resize(img,(640,400),)
    # 将彩色图转换为HSV
    HSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
编程    # 画矩形框
    cv2.rectangle(img,(280,180),(360,260),(0,255,0),2)
    # 依次取出每行每列的H,S,V值放入容器中
    for i in range(280,360):
        for j in range(180,260): H.append(HSV[j,i][0])
    # 分别计算出H,S,V的最大最小
    H_min = min(H);H_max = max(H)
    # 判断颜色
    if H_min >= 0 and H_max <= 10 or H_min >= 156 and H_maChina编程x <= 180: color_name='red'
    elif  H_min >= 26 and H_max <= 34 : color_name='yellow'
    elif  H_min >= 35 and H_max <= 77 : color_name='green'
    elif  H_min >= 100 and H_max <= 124 : color_name='blue'
    print(color_name)
    return  img,color_name

函数功能详解

图像预处理

  • 首先将输入图像调整为固定尺寸(640×400),确保处理一致性

色彩空间转换

  • 将BGR格式转换为HSV格式,HSV色彩空间更适合颜色识别
  • H(色调):表示颜色类型
  • S(饱和度):表示颜色的纯度
  • V(亮度):表示颜色的明暗程度

检测区域标记

  • 在图像上绘制一个绿色矩形框(280,180)到(360,260),标识检测区域

数据采集

  • 遍历检测区域内每个像素点,收集所有H值

颜色判断

  • 计算区域内H值的最小和最大值
  • 根据H值范围判断颜色:
    • 红色:0-10或156-180
    • 黄色:26-34
    • 绿色:35-77
    • 蓝色:100-124

3. 主程序循环

cap = cv2.VideoCapture(0)
while 1:
    _,frame=cap.read()
    img,cal = get_color(frame)
    cv2.imshow('',img)
    if cv2.waitKey(1) == 27:
        break

视频捕捉初始化

  • 创建VideoCapture对象,参数0表示使用默认摄像头

主循环

  • 不断读取视频帧
  • 调用get_color函数处理每一帧
  • 显示处理后的图像
  • 按ESC键(ASCII 27)退出程序

四、HSV色彩空间详解

为什么选择HSV而不是RGB进行颜色识别?

RGB的局限性

  • RGB三个通道都与亮度相关
  • 对光照变化敏感
  • 颜色判断需要同时考虑三个通道

HSV的优势

  • 将颜色信息(H)与亮度(V)、饱和度(javascriptS)分离
  • 对光照变化有一定鲁棒性
  • 颜色判断主要依据H通道

五、颜色范围设定

OpenCV中HSV的范围:

  • H: 0-180 (通常色彩空间为0-360,但OpenCV使用8位存储,所以除以2)
  • S: 0-255
  • V: 0-255

常见颜色H值范围:

  • 红色:0-10和170-180
  • 橙色:11-25
  • 黄色:26-34
  • 绿色:35-77
  • 蓝色:100-124
  • 紫色:125-155

可对比如下的颜色范围图

使用Python和OpenCV库实现实时颜色识别系统

六、系统优化建议

增加饱和度(S)和亮度(V)的过滤:

  • 可以排除低饱和度(接近灰色)或低亮度(接近黑色)的区域

使用均值而非极值:

  • 当前使用min/max容易受噪声影响,可改为计算平均值

扩大检测区域:

  • 当前区域较小(80×80像素),可以适当扩大

添加更多颜色识别:

  • 如橙色、紫色等

优化性能:

  • 当前双重循环效率不高,可以使用NumPy进行向量化操作

七、完整代码

import cv2

def get_color(img):
    H = []
    color_name = None
    img = cv2.resize(img,(640,400),)
    # 将彩色图转换为HSV
    HSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    # 画矩形框
    cv2.rectangle(img,(280,180),(360,260),(0,255,0),2)
    # 依次取出每行每列的H,S,V值放入容器中
    for i in range(280,360):
        for j in range(180,260): H.append(HSV[j,i][0])
    # 分别计算出H,S,V的最大最小
    H_min = min(H);H_max = max(H)
    # 判断颜色
    if H_min >= 0 and H_max <= 10 or H_min >= 156 and H_max <= 180: color_name='red'
    elif  H_min >= 26 and H_max <= 34 : color_name='yellow'
    elif  H_min >= 35 and H_max <= 77 : color_name='green'
    elif  H_min >= 100 and H_max <= 124 : color_name='blue'
    print(color_name)
    return  img,color_name

cap = cv2.VideoCapture(0)
while 1:
    _,frame=cap.read()
    img,cal = get_color(frame)
    cv2.imshow('',img)
    if cv2.waitKey(1) == 27:
        break

八、总结

本文介绍了一个基于OpenCV的实时颜色识别系统,通过HSV色彩空间转换和色调范围判断实现了基本颜色识别功能。该系统可以作为更复杂计算机视觉项目的基础,通过进一步优化和扩展,能够满足各种实际应用需求。FjMkEQJjkU

以上就是使用Python和OpenCV库实现实时颜色识别系统的详细内容,更多关于Python pythonOpenCV实时颜色识别的资料请关注编程China编程(www.chinasem.cn)其它相关文章!

这篇关于使用Python和OpenCV库实现实时颜色识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155083

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置