使用Python和OpenCV库实现实时颜色识别系统

2025-06-16 15:50

本文主要是介绍使用Python和OpenCV库实现实时颜色识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红...

一、引言

今天我将介绍一个使用python和OpenCV库实现的实时颜色识别系统。这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红、黄、绿、蓝)。这种技术在机器人视觉、自动化检测和交互式应用中有着广泛的应用前景。

二、系统概述

该系统主要包含以下几个功能:

  • 实时视频捕捉
  • 在视频帧中划定特定检测区域
  • 将检测区域转换为HSV色彩空间
  • 分析区域内的色调(H)值
  • 根据H值范围判断颜色类型
  • 实时显示结果

三、代码解析

1. 导入库

import cv2

我们只需要导入OpenCV库,它提供了强大的计算机视觉功能,包括图像处理和视频捕捉。

2. 颜色识别函数

def get_color(img):
    H = []
    color_name = None
    img = cv2.resize(img,(640,400),)
    # 将彩色图转换为HSV
    HSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
编程    # 画矩形框
    cv2.rectangle(img,(280,180),(360,260),(0,255,0),2)
    # 依次取出每行每列的H,S,V值放入容器中
    for i in range(280,360):
        for j in range(180,260): H.append(HSV[j,i][0])
    # 分别计算出H,S,V的最大最小
    H_min = min(H);H_max = max(H)
    # 判断颜色
    if H_min >= 0 and H_max <= 10 or H_min >= 156 and H_maChina编程x <= 180: color_name='red'
    elif  H_min >= 26 and H_max <= 34 : color_name='yellow'
    elif  H_min >= 35 and H_max <= 77 : color_name='green'
    elif  H_min >= 100 and H_max <= 124 : color_name='blue'
    print(color_name)
    return  img,color_name

函数功能详解

图像预处理

  • 首先将输入图像调整为固定尺寸(640×400),确保处理一致性

色彩空间转换

  • 将BGR格式转换为HSV格式,HSV色彩空间更适合颜色识别
  • H(色调):表示颜色类型
  • S(饱和度):表示颜色的纯度
  • V(亮度):表示颜色的明暗程度

检测区域标记

  • 在图像上绘制一个绿色矩形框(280,180)到(360,260),标识检测区域

数据采集

  • 遍历检测区域内每个像素点,收集所有H值

颜色判断

  • 计算区域内H值的最小和最大值
  • 根据H值范围判断颜色:
    • 红色:0-10或156-180
    • 黄色:26-34
    • 绿色:35-77
    • 蓝色:100-124

3. 主程序循环

cap = cv2.VideoCapture(0)
while 1:
    _,frame=cap.read()
    img,cal = get_color(frame)
    cv2.imshow('',img)
    if cv2.waitKey(1) == 27:
        break

视频捕捉初始化

  • 创建VideoCapture对象,参数0表示使用默认摄像头

主循环

  • 不断读取视频帧
  • 调用get_color函数处理每一帧
  • 显示处理后的图像
  • 按ESC键(ASCII 27)退出程序

四、HSV色彩空间详解

为什么选择HSV而不是RGB进行颜色识别?

RGB的局限性

  • RGB三个通道都与亮度相关
  • 对光照变化敏感
  • 颜色判断需要同时考虑三个通道

HSV的优势

  • 将颜色信息(H)与亮度(V)、饱和度(javascriptS)分离
  • 对光照变化有一定鲁棒性
  • 颜色判断主要依据H通道

五、颜色范围设定

OpenCV中HSV的范围:

  • H: 0-180 (通常色彩空间为0-360,但OpenCV使用8位存储,所以除以2)
  • S: 0-255
  • V: 0-255

常见颜色H值范围:

  • 红色:0-10和170-180
  • 橙色:11-25
  • 黄色:26-34
  • 绿色:35-77
  • 蓝色:100-124
  • 紫色:125-155

可对比如下的颜色范围图

使用Python和OpenCV库实现实时颜色识别系统

六、系统优化建议

增加饱和度(S)和亮度(V)的过滤:

  • 可以排除低饱和度(接近灰色)或低亮度(接近黑色)的区域

使用均值而非极值:

  • 当前使用min/max容易受噪声影响,可改为计算平均值

扩大检测区域:

  • 当前区域较小(80×80像素),可以适当扩大

添加更多颜色识别:

  • 如橙色、紫色等

优化性能:

  • 当前双重循环效率不高,可以使用NumPy进行向量化操作

七、完整代码

import cv2

def get_color(img):
    H = []
    color_name = None
    img = cv2.resize(img,(640,400),)
    # 将彩色图转换为HSV
    HSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    # 画矩形框
    cv2.rectangle(img,(280,180),(360,260),(0,255,0),2)
    # 依次取出每行每列的H,S,V值放入容器中
    for i in range(280,360):
        for j in range(180,260): H.append(HSV[j,i][0])
    # 分别计算出H,S,V的最大最小
    H_min = min(H);H_max = max(H)
    # 判断颜色
    if H_min >= 0 and H_max <= 10 or H_min >= 156 and H_max <= 180: color_name='red'
    elif  H_min >= 26 and H_max <= 34 : color_name='yellow'
    elif  H_min >= 35 and H_max <= 77 : color_name='green'
    elif  H_min >= 100 and H_max <= 124 : color_name='blue'
    print(color_name)
    return  img,color_name

cap = cv2.VideoCapture(0)
while 1:
    _,frame=cap.read()
    img,cal = get_color(frame)
    cv2.imshow('',img)
    if cv2.waitKey(1) == 27:
        break

八、总结

本文介绍了一个基于OpenCV的实时颜色识别系统,通过HSV色彩空间转换和色调范围判断实现了基本颜色识别功能。该系统可以作为更复杂计算机视觉项目的基础,通过进一步优化和扩展,能够满足各种实际应用需求。FjMkEQJjkU

以上就是使用Python和OpenCV库实现实时颜色识别系统的详细内容,更多关于Python pythonOpenCV实时颜色识别的资料请关注编程China编程(www.chinasem.cn)其它相关文章!

这篇关于使用Python和OpenCV库实现实时颜色识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155083

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/