【图像分类】ConViT从入门到实战——使用ConViT实现植物幼苗的分类(pytorch)

2024-03-22 16:10

本文主要是介绍【图像分类】ConViT从入门到实战——使用ConViT实现植物幼苗的分类(pytorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 摘要
  • 导入项目使用的库
  • 设置全局参数
  • 图像预处理
  • 读取数据
  • 设置模型
  • 定义训练和验证函数
  • 测试
  • 完整的训练代码

摘要

来自 Facebook 的研究者提出了一种名为 ConViT 的新计算机视觉模型,它结合了两种广泛使用的 AI 架构——卷积神经网络 (CNN) 和 Transformer,该模型取长补短,克服了 CNN 和 Transformer 本身的一些局限性。同时,借助这两种架构的优势,这种基于视觉 Transformer 的模型可以胜过现有架构,尤其是在小数据的情况下,同时在大数据的情况下也能实现类似的优秀性能。

• 论文地址:https://arxiv.org/pdf/2103.10697.pdf
• 论文翻译:ConViT:使用软卷积归纳偏置改进视觉变换器
• GitHub 地址:https://github.com/facebookresearch/convit
• 本文用的数据集
链接:https://pan.baidu.com/s/1gYb-3XCZBhBoEFyj6d_kdw
提取码:q060
其工作原理
ConViT 在 vision Transformer 的基础上进行了调整,以利用 soft 卷积归纳偏置,从而激励网络进行卷积操作。同时最重要的是,ConViT 允许模型自行决定是否要保持卷积。为了利用这种 soft 归纳偏置,研究者引入了一种称为「门控位置自注意力(gated positional self-attention,GPSA)」的位置自注意力形式,其模型学习门控参数 lambda,该参数用于平衡基于内容的自注意力和卷积初始化位置自注意力。
在这里插入图片描述
如上图所示,ConViT(左)在 ViT 的基础上,将一些自注意力(SA)层用门控位置自注意力层(GPSA,右)替代。因为 GPSA 层涉及位置信息,因此在最后一个 GPSA层之后,类 token 会与隐藏表征联系到一起。
有了 GPSA 层加持,ConViT 的性能优于 Facebook 去年提出的 DeiT 模型。例如,ConViT-S+ 性能略优于 DeiT-B(对比结果为 82.2% vs. 81.8%),而 ConViT-S + 使用的参数量只有 DeiT-B 的一半左右 (48M vs 86M)。而 ConViT 最大的改进是在有限的数据范围内,soft 卷积归纳偏置发挥了重要作用。例如,仅使用 5% 的训练数据时,ConViT 的性能明显优于 DeiT(对比结果为 47.8% vs. 34.8%)。

此外,ConViT 在样本效率和参数效率方面也都优于 DeiT。如上图所示,左图为 ConViT-S 与 DeiT-S 的样本效率对比结果,这两个模型是在相同的超参数,且都是在 ImageNet-1k 的子集上训练完成的。图中绿色折线是 ConViT 相对于 DeiT 的提升。研究者还在 ImageNet-1k 上比较了 ConViT 模型与其他 ViT 以及 CNN 的 top-1 准确率,如上右图所示。
除了 ConViT 的性能优势外,门控参数提供了一种简单的方法来理解模型训练后每一层的卷积程度。查看所有层,研究者发现 ConViT 在训练过程中对卷积位置注意力的关注逐渐减少。对于靠后的层,门控参数最终会收敛到接近 0,这表明卷积归纳偏置实际上被忽略了。然而,对于起始层来说,许多注意力头保持较高的门控值,这表明该网络利用早期层的卷积归纳偏置来辅助训练。

在这里插入图片描述
上图展示了 DeiT (b) 及 ConViT © 注意力图的几个例子。σ(λ) 表示可学习的门控参数。接近 1 的值表示使用了卷积初始化,而接近 0 的值表示只使用了基于内容的注意力。注意,早期的 ConViT 层部分地维护了卷积初始化,而后面的层则完全基于内容。

导入项目使用的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from models import convit_tiny
from torch.autograd import Variable
from mydatasets import SeedlingData
import os

设置全局参数

设置使用哪块GPU,0指的是第一块GPU,设置学习率、BatchSize、epoch等参数

os.environ['CUDA_VISIBLE_DEVICE'] = '0'torch.cuda.set_device(0)
# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 16
EPOCHS = 100
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

图像预处理

数据处理比较简单,没有做复杂的尝试,有兴趣的可以加入一些处理。

# 数据预处理transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

读取数据

将数据集解压后放到data文件夹下面,如图:

在这里插入图片描述

然后我们在dataset文件夹下面新建 init.py和dataset.py,在mydatasets.py文件夹写入下面的代码:

说一下代码的核心逻辑。

第一步 建立字典,定义类别对应的ID,用数字代替类别。

第二步 在__init__里面编写获取图片路径的方法。测试集只有一层路径直接读取,训练集在train文件夹下面是类别文件夹,先获取到类别,再获取到具体的图片路径。然后使用sklearn中切分数据集的方法,按照7:3的比例切分训练集和验证集。

第三步 在__getitem__方法中定义读取单个图片和类别的方法,由于图像中有位深度32位的,所以我在读取图像的时候做了转换。

# coding:utf8
import os
from PIL import Image
from torch.utils import data
from torchvision import transforms as T
from sklearn.model_selection import train_test_splitLabels = {'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3,'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8,'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}class SeedlingData (data.Dataset):def __init__(self, root, transforms=None, train=True, test=False):"""主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据"""self.test = testself.transforms = transformsif self.test:imgs = [os.path.join(root, img) for img in os.listdir(root)]self.imgs = imgselse:imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]imgs = []for imglable in imgs_labels:for imgname in os.listdir(imglable):imgpath = os.path.join(imglable, imgname)imgs.append(imgpath)trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42)if train:self.imgs = trainval_fileselse:self.imgs = val_filesdef __getitem__(self, index):"""一次返回一张图片的数据"""img_path = self.imgs[index]img_path=img_path.replace("\\",'/')if self.test:label = -1else:labelname = img_path.split('/')[-2]label = Labels[labelname]data = Image.open(img_path).convert('RGB')data = self.transforms(data)return data, labeldef __len__(self):return len(self.imgs)

然后我们在train.py调用SeedlingData读取数据 ,记着导入刚才写的dataset.py(from mydatasets import SeedlingData)

dataset_train = SeedlingData('data/train', transforms=transform, train=True)
dataset_test = SeedlingData("data/train", transforms=transform_test, train=False)
# 读取数据
print(dataset_train.imgs)# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型

  • 设置loss函数为nn.CrossEntropyLoss()。
  • 设置模型为convit_tiny,num_classes设置为12,embed_dim是编码的个数,设置为48,dropout设置为0.5。
  • 优化器设置为adam。
# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = convit_tiny(pretrained=False, num_classes=12, embed_dim=48, drop_rate=0.5)model_ft.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)def adjust_learning_rate(optimizer, epoch):"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""modellrnew = modellr * (0.1 ** (epoch // 50))print("lr:", modellrnew)for param_group in optimizer.param_groups:param_group['lr'] = modellrnew

定义训练和验证函数

# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))# 验证过程
def val(model, device, test_loader):model.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)_, pred = torch.max(output.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))# 训练for epoch in range(1, EPOCHS + 1):adjust_learning_rate(optimizer, epoch)train(model_ft, DEVICE, train_loader, optimizer, epoch)val(model_ft, DEVICE, test_loader)
torch.save(model_ft, 'model.pth')

测试

我介绍两种常用的测试方式,第一种是通用的,通过自己手动加载数据集然后做预测,具体操作如下:

测试集存放的目录如下图:
在这里插入图片描述

第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

第三步 加载model,并将模型放在DEVICE里,

第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。

import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed','Common wheat','Fat Hen', 'Loose Silky-bent','Maize','Scentless Mayweed','Shepherds Purse','Small-flowered Cranesbill','Sugar beet')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)path='data/test/'
testList=os.listdir(path)
for file in testList:img=Image.open(path+file)img=transform_test(img)img.unsqueeze_(0)img = Variable(img).to(DEVICE)out=model(img)# Predict_, pred = torch.max(out.data, 1)print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))

第二种 使用自定义的Dataset读取图片

import torch.utils.data.distributed
import torchvision.transforms as transforms
from dataset.dataset import SeedlingData
from torch.autograd import Variableclasses = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed','Common wheat','Fat Hen', 'Loose Silky-bent','Maize','Scentless Mayweed','Shepherds Purse','Small-flowered Cranesbill','Sugar beet')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)dataset_test =SeedlingData('data/test/', transform_test,test=True)
print(len(dataset_test))
# 对应文件夹的labelfor index in range(len(dataset_test)):item = dataset_test[index]img, label = itemimg.unsqueeze_(0)data = Variable(img).to(DEVICE)output = model(data)_, pred = torch.max(output.data, 1)print('Image Name:{},predict:{}'.format(dataset_test.imgs[index], classes[pred.data.item()]))index += 1

完整的训练代码

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from models import convit_tiny
from torch.autograd import Variable
from mydatasets import SeedlingData
import os# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 32
EPOCHS = 10
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 数据预处理transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
dataset_train = SeedlingData('data/train', transforms=transform, train=True)
dataset_test = SeedlingData("data/train", transforms=transform_test, train=False)
# 读取数据
print(dataset_train.imgs)# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = convit_tiny(pretrained=False, num_classes=12, embed_dim=48, drop_rate=0.5)model_ft.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)def adjust_learning_rate(optimizer, epoch):"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""modellrnew = modellr * (0.1 ** (epoch // 50))print("lr:", modellrnew)for param_group in optimizer.param_groups:param_group['lr'] = modellrnew# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))# 验证过程
def val(model, device, test_loader):model.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)_, pred = torch.max(output.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))# 训练for epoch in range(1, EPOCHS + 1):adjust_learning_rate(optimizer, epoch)train(model_ft, DEVICE, train_loader, optimizer, epoch)val(model_ft, DEVICE, test_loader)
torch.save(model_ft, 'model.pth')

代码链接:https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/20593432?spm=1001.2014.3001.5501

这篇关于【图像分类】ConViT从入门到实战——使用ConViT实现植物幼苗的分类(pytorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835639

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函