深度学习 Lecture 4 Adam算法、全连接层与卷积层的区别、图计算和反向传播

本文主要是介绍深度学习 Lecture 4 Adam算法、全连接层与卷积层的区别、图计算和反向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Adam算法(自适应矩估计)

全名:Adapative Moment Estimation

目的:最小化代价函数(和梯度下降一样)

本质:根据更新学习率后的情况自动更新学习率的值(可能是自动增大,也可能是自动变小)

它在全局不止有一个学习率,就是说每个式子的学习率都有可能有所不同。

优点:对学习率的选择更具有鲁棒性,通常比梯度下降还要快

注意:在代码中设置它的时候需要标注一个初始的学习率先

代码:

这里把初始学习率设置为le-3了

from_logits = True是为了让计算结果更加精确

SparseCategoricalCrossentropy是稀疏矩阵的交叉熵,它可以让结果出现在某个范围中

二、全连接层 (Dense layer)

含义:就是这一层里的每个神经元都从前一层得到所有的激活

三、卷积层(Convolutional layer)

含义:每个神经元只得到一部分

比如说,对于一张图片,卷积层是只接收图片的某一部份数据的,而不是整张图片

作用:

1. 加快计算速度

2.需要的数据较少

3.不容易过拟合

如果在神经网络中有多个卷积层,这个神经网络就叫卷积神经网络。

四、图计算(Computation graph)

        就是,一组节点,这些节点通过边缘或箭头相连,其实就是把每个计算步骤,单独作为一个步骤,去一步一步计算。

五、反向传播(back prop)

上图是前向传播,就是从左到右进行一步一步的计算,而反向传播就是从右到左,计算导数。

在机器学习中,很多算法最后都会转化为求一个目标损失函数(loss function)的最小值。这个损失函数往往很复杂,难以求出最值的解析表达式。而梯度下降法正是为了解决这类问题。直观地说一下这个方法的思想:我们把求解损失函数最小值的过程看做“站在山坡某处去寻找山坡的最低点”。我们并不知道最低点的确切位置,“梯度下降”的策略是每次向“下坡路”的方向走一小步,经过长时间的走“下坡路”最后的停留位置也大概率在最低点附近。这个“下坡路的方向”我们选做是梯度方向的负方向,选这个方向是因为每个点的梯度负方向是在该点处函数下坡最陡的方向。至于为什么梯度负方向是函数下降最陡的方向请参考大一下的微积分教材,或者看看这个直观的解释。在神经网络模型中反向传播算法的作用就是要求出这个梯度值,从而后续用梯度下降去更新模型参数。反向传播算法从模型的输出层开始,利用函数求导的链式法则,逐层从后向前求出模型梯度。

比如上图的最终计算节点是J = d^2/2,反向传播的第一步将询问如果d的值稍微改变一点,那j的值会改变多少?

假如算出来是2,就在J到d的这个板块的方向上写一个2,这个值是j对于输入值d的导数

这是第一步。

下一步是查看之前的节点,并询问j对于a的导数是什么?

算出来是2,就在d-a这个线上写2。

照这样的思路,一直往前推j对每个参数的导数,一直推到j对最前面(第一个输入值)的导数,在这里面是w。

反向传播的作用,就是计算出最初的输入值与输出值之间存在的导数关系(即输入的参数对输出值的影响是几倍?)这样的话,就能节省调整参数的时间。

这篇关于深度学习 Lecture 4 Adam算法、全连接层与卷积层的区别、图计算和反向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834627

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决