【算法与数据结构】二叉树(前中后)序遍历

2024-03-19 09:28

本文主要是介绍【算法与数据结构】二叉树(前中后)序遍历,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述

文章目录

  • 📝前言
  • 🌠 创建简单二叉树
    • 🌉二叉树的三种遍历
      • 🌠前序
        • 🌉中序遍历
      • 🌠后序遍历
    • 🌠二叉树节点个数
    • 🌉二叉树节点个数注意点
  • 🚩总结


📝前言

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
    在这里插入图片描述

二叉树可以没有节点(空树)否则,它包含一个根节点,这个根节点最多可以有两个分支:左子树和右子树,左右子树也符合二叉树的定义,可以是空树,或者由根节点和其左右子树组成。
因此二叉树的定义采用的是递归的思想:一个二叉树要么为空,要么由根节点和其左右两个子二叉树组成。左右子树本身也符合二叉树的定义,可以递归定义下去。

本小节我们将学习二叉树的前中后序遍历!

🌠 创建简单二叉树

在学习二叉树的基本操作之前,需要先创建一棵二叉树,然后才能学习相关的基本操作。由于现在大家对二叉树结构的理解还不够深入,为了降低学习成本,这里手动快速创建一棵简单的二叉树,以便快速进入二叉树操作学习。等大家对二叉树结构有了一定了解之后,再深入研究二叉树的真正创建方式。

手插简单二叉树代码:

// 二叉树节点结构体定义
typedef struct BinTreeNode
{// 左子节点指针struct BinTreeNode* left;// 右子节点指针struct BinTreeNode* right;// 节点值int val;
}BTNode;// 创建节点,分配内存并返回
BTNode* BuyBTNode(int val)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));// 空间分配失败if (newnode == NULL){perror("malloc fail");return NULL;}// 初始化节点值newnode->val = val;// 初始化左右子节点为NULLnewnode->left = NULL;newnode->right = NULL;return newnode;
}// 创建示例树
BTNode* CreateTree()
{// 创建节点1-6BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);// 构建树结构n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return n1; // 返回根节点
}

二叉树的图像:
在这里插入图片描述
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。

🌉二叉树的三种遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
在这里插入图片描述

🌠前序

您说得对,我来补充一下前序遍历的注释:

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
算法:
访问根节点 -> 前序遍历左子树 -> 前序遍历右子树

  • 即先访问根节点,然后遍历其左子树,再遍历其右子树。

在这里插入图片描述

注意:
递归基准条件是当根节点为NULL时返回。访问根节点要放在递归左右子树之前,这保证了根节点一定先于其子节点被访问。递归左子树和右子树的顺序不能调换,否则就不是前序遍历了。

代码:

void PreOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}printf("%d ", root->val);PreOrder(root->left);PreOrder(root->right);
}
int main()
{BTNode* root = CreateTree();PreOrder(root);printf("\n");
}

前序递归图解:
在这里插入图片描述

运行:

🌉中序遍历

中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。中序遍历是在遍历一个结点的左子树后,然后访问这个结点,最后遍历它的右子树。

void InOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}

在这里插入图片描述

🌠后序遍历

后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
后序遍历是先遍历一个结点的左右子树,最后再访问这个结点。

void PostOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

后序运行图:
在这里插入图片描述
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
在这里插入图片描述

🌠二叉树节点个数

这里分别实现前序、中序和后序遍历方式统计二叉树节点个数:

前序遍历:

int PreOrderCount(BTNode* root) 
{if(root == NULL) return 0;count++;  PreOrderCount(root->left);PreOrderCount(root->right);return count;
}int TreeSize(BTNode* root) 
{if(root == NULL) return 0;  count = 0;PreOrderCount(root);return count;
}

中序遍历:

int InOrderCount(BTNode* root) 
{if(root == NULL) return 0;InOrderCount(root->left);count++;InOrderCount(root->right);return count;
}int TreeSize(BTNode* root) 
{if(root == NULL) return 0;count = 0;  InOrderCount(root);return count;
}

后序遍历:

int PostOrderCount(BTNode* root) 
{if(root == NULL) return 0;PostOrderCount(root->left);PostOrderCount(root->right);count++;return count;
}int TreeSize(BTNode* root) 
{if(root == NULL) return 0;count = 0;PostOrderCount(root);return count;
}

三种遍历方式都是通过递归遍历每个节点,并在遍历每个节点时将统计变量count加1,最终count的值即为树的节点总数。

🌉二叉树节点个数注意点

注意当我们TreeSize函数使用了static变量size来统计节点个数,static变量的值会在函数调用之间保留,所以第二次调用TreeSize时,size的值会继续增加,导致统计结果叠加。

int TreeSize(BTNode* root)
{static int size = 0;if (root == NULL)return 0;else++size;TreeSize(root->left);TreeSize(root->right);return size;
}
int main()
{printf("TreeSize : %d\n", TreeSize(root));printf("TreeSize : %d\n", TreeSize(root));
}

代码运行:

在这里插入图片描述

改进

为了解决使用static变量导致的结果叠加问题,可以考虑使用以下方法:

  1. 每次调用TreeSize前重置size为0:
int TreeSize(BTNode* root) {static int size = 0;size = 0; // reset sizeif (root == NULL) return 0;else++size;TreeSize(root->left);TreeSize(root->right);return size;
}
  1. 不使用static变量,直接返回递归调用的结果:
int TreeSize(BTNode* root) 
{if (root == NULL)return 0;else return 1 + TreeSize(root->left) + TreeSize(root->right);
}

如果当前节点为NULL,直接返回0否则,返回:当前节点本身为1,加上左子树的节点数(TreeSize(root->left)返回值),加上右子树的节点数(TreeSize(root->right)返回值)

  1. 将size定义为函数参数,每次递归传递:
int TreeSize(BTNode* root, int* size) 
{if (root == NULL) return 0;*size += 1;TreeSize(root->left, size);TreeSize(root->right, size);return *size;
}
int main()
{// 调用int size = 0;TreeSize(root, &size);
}

🚩总结

请添加图片描述

这篇关于【算法与数据结构】二叉树(前中后)序遍历的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825521

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java遍历HashMap的6种常见方式

《Java遍历HashMap的6种常见方式》这篇文章主要给大家介绍了关于Java遍历HashMap的6种常见方式,方法包括使用keySet()、entrySet()、forEach()、迭代器以及分别... 目录1,使用 keySet() 遍历键,再通过键获取值2,使用 entrySet() 遍历键值对3,

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.