引入概念的多文本标签分类:Concept-Based Label Embedding via Dynamic Routing for Hierarchical Text Classification

本文主要是介绍引入概念的多文本标签分类:Concept-Based Label Embedding via Dynamic Routing for Hierarchical Text Classification,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Zhang, Jiong, Wei-Cheng Chang, Hsiang-Fu Yu, and Inderjit Dhillon. “Fast Multi-Resolution Transformer Fine-Tuning for Extreme Multi-Label Text Classification.” In Advances in Neural Information Processing Systems, 34:7267–80. Curran Associates, Inc., 2021. Fast Multi-Resolution Transformer Fine-tuning for Extreme Multi-label Text Classification.

1 Motivation

        传统的层次多标签文本分类中,忽略了同一层次类之间的信息,比如图中,sport在第一层,是父类,surfing到college是第二层的子类。而在第二层中,surfing和swimming是跟water有关,其余两组类似。文章将water、ball、academy定义为相应子类共享的抽象概念,因而说本文方法是基于概念的标签文本嵌入。

        同理,在数据集wos中,也发现了类似的概念。

2 Methods

         本文提出了基于层次注意力的架构(Hierarchical Sttention-Based Framework,左),其中包含基于概念的分类器(CCM,右上),CCM包含概念共享模块(CSM,下)。下面分别介绍。

2.1 Hierarchical Sttention-Based Framework

Text Encoder

        对于文本,使用CNN进行n-gram特征的提取,然后用双向GRU提取上下文特征,最后得到:

作为文档的表征,|d|为token的个数。

Label Embedding Attention

        第i层的标签表示为:,首先计算余弦相似矩阵,其中。使用卷积核对每一个词p,提取其上下k个长度的特征:,然后使用最大池得到词p对第i层每一个标签的相关值:,用softmax将r标准化之后,计算标签和文本之间的注意力分数:

 2.2 Concept Sharing Module (CSM)

        上面是主体框架,文档的表征已经说明了来源,而CSM和CCM就是获得标签的表征C的。

Concepts Encoder

        首先对于每一个类c,将其语料库中的关键词拿出来,并将其中的top-n作为这个类的概念。对于关键词,wos中每个文档都有相应的关键词,可以直接使用。DBpeida中没有,本文使用卡方检验获得单词和类之间的依赖关系,并根据卡方值进行排序。

        两种方法编码概念:

        1) 直接使用top-n个关键词

        2) 将所有关键词进行聚类(GloVe 300-dimensional embeddings作为词嵌入的初始化),然后选取聚类的中心词

        这两种方法得到的结果都可以表示为:

 Concepts Sharing via Dynamic Routing

        对于HTC问题,子类和父类、不同类之间共享一些概念。不同概念从不同的角度描述一个类,而概念的共享体现了类间的语义联系。使用下述方法迭代更新标签表征:

 

 beta表示概念i和类j的耦合因子(couping coefficient),b的来源见上图

v为类的表征,类似于注意力机制

 然后将v压缩得到c(squashing)

对上述过程迭代r次得到最后的表示。

2.3 Classification

损失函数为每层的损失之和:

3   Experiments

3.1 datasets

 3.2 Ablation

3.3  Visualizations

感想

        本文乍一看比较复杂,但实际上还是与LightXML类似,都是将标签进行聚类。与之不同的是,本文使用的不是传统的聚类,而是采用语义。

这篇关于引入概念的多文本标签分类:Concept-Based Label Embedding via Dynamic Routing for Hierarchical Text Classification的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795968

相关文章

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

HTML input 标签示例详解

《HTMLinput标签示例详解》input标签主要用于接收用户的输入,随type属性值的不同,变换其具体功能,本文通过实例图文并茂的形式给大家介绍HTMLinput标签,感兴趣的朋友一... 目录通用属性输入框单行文本输入框 text密码输入框 password数字输入框 number电子邮件输入编程框

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取