Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战

本文主要是介绍Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

向量自回归移动平均与外生变量模型(Vector Autoregression Moving Average with Exogenous Regressors,简称VARMAX)是一种扩展的多元时间序列分析模型,它结合了向量自回归(VAR)和向量移动平均(VMA)模型的特点,并且允许纳入外生变量作为模型的一部分。

在VARMAX模型中:

向量自回归(VAR):

VAR模型描述了一系列内生变量(即模型内部相互影响的时间序列变量)如何通过它们各自的滞后值以及其他内生变量的滞后值共同决定当前值。比如,一个经济系统中的多个宏观经济指标可能会相互影响并在过去的状态基础上共同决定当前状态。

向量移动平均(VMA):

VMA模型则考虑残差项(即观测值与模型预测值之间的误差)的滞后值对当前变量的影响。

外生变量(Exogenous Regressors):

在VARMAX模型中,除了内生变量的滞后效应之外,还包括了一组外生变量(或称解释变量、前定变量),这些变量不受模型内其他变量的影响,但可以影响模型内的内生变量。例如,在经济分析中,政策利率或者特定的经济政策变化等可能是模型中的外生变量。

综合起来,VARMAX模型能够同时捕捉内生变量之间的动态交互作用、残差项的历史依赖以及外生变量对内生变量的即时和滞后影响,从而提供更全面、灵活的多元时间序列分析框架。

本项目通过VARMAX算法来构建向量自回归移动平均与外生变量模型。   

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

date

日期

2

dln_inv

投资(Investment)的对数增长率

3

dln_inc

收入(Income)的对数增长率

4

dln_consump

消费(Consumption)的对数增长率

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

      

从上图可以看到,总共有3个变量,数据中无缺失值,共91条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。 

关键代码如下:    

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,变量主要集中在-0.05~0.10之间。  

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

4.3 折线图

从上图中可以看到,数据是不断波动的。

5.构建向量自回归移动平均与外生变量模型

主要使用VARMAX算法,用于向量自回归移动平均与外生变量模型。 

5.1 构建模型

编号

模型名称

参数

1

向量自回归移动平均与外生变量模型

order=(2, 0)

2

trend='n'

3

exog=exog

5.2 模型摘要信息

6.模型评估

6.1 脉冲响应函数图

6.2 模型预测

预测结果及展示:

7.结论与展望

综上所述,本文采用了VARMAX算法来构建向量自回归移动平均与外生变量模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1X2AKD-zOTzBJY83MGq56uA 
提取码:lzli

这篇关于Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756714

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四: