《算法的乐趣》7.稳定匹配与舞伴问题------python

2024-02-18 10:48

本文主要是介绍《算法的乐趣》7.稳定匹配与舞伴问题------python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 稳定匹配问题
        • 概念
        • Gale-Shapley稳定匹配算法:
        • 舞伴问题
        • 穷举所有完美匹配结果
        • 完美匹配中去除不稳定因素
      • 二部图与二分匹配
        • 概念
        • 最大流(maximalflow)算法或匈牙利(Hungarian algorithm)算法:

稳定匹配问题

假设 n n n个未婚男人的集合 M = m 1 , m 2 , … , m n M={m_{1},m_{2},…,m_{n}} M=m1,m2,,mn n n n个未婚女人的集合 W = w 1 , w 2 , … , w n W={w_{1},w_{2},…,w_{n}} W=w1,w2,,wn,令 M × W M×W M×W为所有可能的形如 ( m i , w i ) (m_{i},w_{i}) (mi,wi)的有序对的集合,其中 m i ∈ M , w i ∈ W m_{i}\in M,w_{i}\in W miM,wiW.

概念

匹配: S S S是来自 M × W M×W M×W的有序对的集合,并且具有以下性质:每个 M M M的成员和每个 W W W的成员至多出现在 S S S的一个有序对中。
完美匹配: S ′ S' S是一个具有以下性质的匹配: M M M的每个成员和 W W W的每个成员恰好出现在 S ′ S' S的一个对里。

S S S S ′ S' S这两个定义的差别就是“至多”和“恰好”两个词,可以将 S S S理解为 M M M W W W的成员配对结婚,但是 M M M W W W中不一定所有成员都能配对成功,还有剩余的男人和女人是单身。而完美匹配 S ′ S' S则是 S S S的一种特殊情况,即 S ′ S' S是所有人都配对成功,不存在落单的男人和女人。

在完美匹配的背景下引入优先或偏好的概念,每个男人都按照个人喜好对所有女人排名,如果某个男人 m m m给女人 w w w的排名高于给 w ′ w' w的排名,就可以理解为 m m m喜欢 w w w胜过 w ′ w' w.反过来也一样,每个女人也按照自己的喜好对所有的男人排名。以上排名必须区分先后顺序,不能有排名并列的情况出现。

稳定匹配就是在引入优先排名的情况下,一个完美匹配 S S S如果不存在不稳定因素,则称这个完美匹配是稳定匹配。

不稳定因素:假设在完美匹配 S S S中存在两个配对 ( m , w ) (m,w) (m,w) ( m ′ , w ′ ) (m',w') (m,w),但是从优先排名上看, m m m更喜欢 w ′ w' w而不喜欢 w w w,同时 w ′ w' w也更喜欢 m m m而不喜欢 m ′ m' m,在这种情况下,我们称这个完美匹配S是不稳定的,像 ( m , w ′ ) (m,w') (m,w)这样有“私奔”倾向的不稳定对(unstable pair)就是 S S S的一个不稳定因素。

稳定匹配满足两个条件:首先,它是一个完美匹配;其次,它不含有任何不稳定因素。

Gale-Shapley稳定匹配算法:

对每一个单身男在其所有尚未拒绝他的女士中选择一位排名最优先的女士;
女士有三种状态:没被选择,一个选择,多个选择;
一个选择:两人绑定,
多个选择:每一位女士将正在追求她的单身男与其当前男友进行比较,选择其中排名优先的男士作为其男友,即若单身男优于当前男友,则抛弃当前男友;否则保留当前男友,拒绝单身男。若某男士被其女友抛弃,重新变成单身男。
循环。直到全部组合

舞伴问题
from collections import deque## 初始化
boys = ["Albert", "Brad", "Chuck"]
girls = ["Laura", "Marcy", "Nancy"]
# 偏爱列表
sort_boy_to_girl = [[1, 3, 2], [3, 1, 2], [1, 2, 3]]
sort_girl_to_boy = [[2, 3, 1], [1, 3, 2], [2, 1, 3]]def find_free_partner(boys, girls, sort_boy_to_girl, sort_girl_to_boy):# 当前选择的舞伴current_boys = {boys[0]:None, boys[1]:None, boys[2]:None}current_girls = {girls[0]:None, girls[1]:None, girls[2]:None}count = len(boys)# 建立队列,男孩下一次选择的女孩next_select = {}for i in range(count):next_select[boys[i]] = deque()argsort_p = sorted(range(count), key=lambda k: sort_boy_to_girl[i][k])for j in range(count):next_select[boys[i]].append(girls[argsort_p[j]])# 女孩选择男孩字典sort_girl = {}for i in range(count):sort_girl[girls[i]] = {}for j in range(count):sort_girl[girls[i]][boys[j]] = sort_girl_to_boy[i][j]while None in current_boys.values():for i in range(count):bid = boys[i]if current_boys[bid]:# 男孩有对象,跳过continueelse:# 优先选择的女孩select = next_select[bid][0]if current_girls[select] == None:# 女孩没对象,两者结合current_boys[bid] = selectcurrent_girls[select] = bidnext_select[bid].popleft()else:# 和女孩的对象好感度对比if sort_girl[select][current_girls[select]] < sort_girl[select][bid]:next_select[bid].popleft()else:current_boys[current_girls[select]] = Nonecurrent_boys[bid] = selectcurrent_girls[select] = bidnext_select[bid].popleft()return current_boys
print(find_free_partner(boys, girls, sort_boy_to_girl, sort_girl_to_boy))
{'Albert': 'Nancy', 'Brad': 'Marcy', 'Chuck': 'Laura'}
穷举所有完美匹配结果

首先穷举完所有的完美匹配;
然后从中去除掉含有不稳定因素的项。

# 穷举
# 书中采用递归实现全排列的方式
## 初始化
boys = ["Albert", "Brad", "Chuck"]
girls = ["Laura", "Marcy", "Nancy"]
# 偏爱列表
sort_boy_to_girl = [[1, 3, 2], [3, 1, 2], [1, 2, 3]]
sort_girl_to_boy = [[2, 3, 1], [1, 3, 2], [2, 1, 3]]current_boys = {boys[0]:None, boys[1]:None, boys[2]:None}
current_girls = {girls[0]:None, girls[1]:None, girls[2]:None}all_select = []
count = 0
def perm(girls, begin, end):global countif begin >= end:current_boys = {boys[0]:girls[0], boys[1]:girls[1], boys[2]:girls[2]}all_select.append(current_boys)count += 1else:i = beginfor num in range(begin, end):girls[num], girls[i] = girls[i], girls[num]perm(girls, begin+1, end)girls[num], girls[i] = girls[i], girls[num]return all_select
all_select = perm(girls, 0, len(girls))
print(all_select)
[{'Albert': 'Laura', 'Brad': 'Marcy', 'Chuck': 'Nancy'}, {'Albert': 'Laura', 'Brad': 'Nancy', 'Chuck': 'Marcy'}, {'Albert': 'Marcy', 'Brad': 'Laura', 'Chuck': 'Nancy'}, {'Albert': 'Marcy', 'Brad': 'Nancy', 'Chuck': 'Laura'}, {'Albert': 'Nancy', 'Brad': 'Marcy', 'Chuck': 'Laura'}, {'Albert': 'Nancy', 'Brad': 'Laura', 'Chuck': 'Marcy'}]
完美匹配中去除不稳定因素
### 去除不稳定因素# 男孩选择女孩字典
count = len(boys)
sort_boy = {}
for i in range(count):sort_boy[boys[i]] = {}for j in range(count):sort_boy[boys[i]][girls[j]] = sort_boy_to_girl[i][j]# 女孩选择男孩字典
sort_girl = {}
for i in range(count):sort_girl[girls[i]] = {}for j in range(count):sort_girl[girls[i]][boys[j]] = sort_girl_to_boy[i][j]def remove_unstable_factors(all_select):global sort_boy, sort_girla = 0stable = []for select in all_select:judge_girl = []for boy, girl in select.items():if sort_boy[boy][girl] == 1:judge_girl.append(girl)a += 1else:for i in range(sort_boy[boy][girl]-1):ju_girl = list(sort_boy[boy].keys())[list(sort_boy[boy].values()).index(i+1)]if ju_girl in judge_girl:ju_boy = list(select.keys())[list(select.values()).index(ju_girl)]if sort_girl[ju_girl][ju_boy] > sort_girl[ju_girl][boy]:a = -1000000else:a += 1if a > 0:  stable.append(select)a = 0return stableprint(remove_unstable_factors(all_select))
[{'Albert': 'Marcy', 'Brad': 'Nancy', 'Chuck': 'Laura'}, {'Albert': 'Nancy', 'Brad': 'Marcy', 'Chuck': 'Laura'}]

二部图与二分匹配

概念

二部图 G = ( V , E ) G=(V,E) G=(V,E)它的顶点集合 V V V可以划分为 X X X Y Y Y两个集合,它的边集合 E E E中的每条边都有一个端点在 X X X集合,另一个端点在 Y Y Y集合。
二部图的匹配:给定一个二部图 G = ( V , E ) G=(V,E) G=(V,E)的子图 M M M,如果 M M M的边集中任意两条边都不依附于同一个顶点,则称 M M M是一个匹配。
最大匹配:如果 G G G的一系列子图 M 0 , M 2 , . . . M n M_{0},M_{2},...M_{n} M0,M2,...Mn都是匹配,那么包含边数最多的那个匹配就是图 G G G的最大匹配。
完美匹配:如果一个最大匹配中所有的点都有边与之相连,没有未覆盖点,则这个最大匹配就是完美匹配。
当二部图中两个顶点集合中的顶点个数相等时,这个最大匹配同时也是完美匹配。

最大流(maximalflow)算法或匈牙利(Hungarian algorithm)算法:

待看

这篇关于《算法的乐趣》7.稳定匹配与舞伴问题------python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720912

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核