Spark中多分区写文件前可以不排序么

2024-02-16 13:52
文章标签 排序 分区 spark 中多

本文主要是介绍Spark中多分区写文件前可以不排序么,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

Spark 3.5.0
目前 Spark中的实现中,对于多分区的写入默认会先排序,这是没必要的。可以设置spark.sql.maxConcurrentOutputFileWriters 为大于0来避免排序。

分析

这部分主要分为三个部分:
一个是V1Writes规则的重改;
另一个是FileFormatWriter中的dataWriter的选择;
还有一个是Spark中为什么会加上Sort
这三部分是需要结合在一起分析讨论的

V1Writes规则的重改

直接转到代码部分:

object V1Writes extends Rule[LogicalPlan] with SQLConfHelper {import V1WritesUtils._override def apply(plan: LogicalPlan): LogicalPlan = {if (conf.plannedWriteEnabled) {plan.transformUp {case write: V1WriteCommand if !write.child.isInstanceOf[WriteFiles] =>val newQuery = prepareQuery(write, write.query)val attrMap = AttributeMap(write.query.output.zip(newQuery.output))val writeFiles = WriteFiles(newQuery, write.fileFormat, write.partitionColumns,write.bucketSpec, write.options, write.staticPartitions)val newChild = writeFiles.transformExpressions {case a: Attribute if attrMap.contains(a) =>a.withExprId(attrMap(a).exprId)}val newWrite = write.withNewChildren(newChild :: Nil).transformExpressions {case a: Attribute if attrMap.contains(a) =>a.withExprId(attrMap(a).exprId)}newWrite}} else {plan}}

其中 prepareQuery是对满足条件的计划前加上Sort逻辑排序,其中prepareQuery关键的代码如下:

    val requiredOrdering = write.requiredOrdering.map(_.transform {case a: Attribute => attrMap.getOrElse(a, a)}.asInstanceOf[SortOrder])val outputOrdering = empty2NullPlan.outputOrderingval orderingMatched = isOrderingMatched(requiredOrdering.map(_.child), outputOrdering)if (orderingMatched) {empty2NullPlan} else {Sort(requiredOrdering, global = false, empty2NullPlan)}

write.requiredOrdering中涉及到的类为InsertIntoHadoopFsRelationCommandInsertIntoHiveTable,且这两个物理计划中的requiredOrdering实现都是:

V1WritesUtils.getSortOrder(outputColumns, partitionColumns, bucketSpec, options)

getSortOrder方法关键代码如下:

    val sortColumns = V1WritesUtils.getBucketSortColumns(bucketSpec, dataColumns)if (SQLConf.get.maxConcurrentOutputFileWriters > 0 && sortColumns.isEmpty) {// Do not insert logical sort when concurrent output writers are enabled.Seq.empty} else {// We should first sort by dynamic partition columns, then bucket id, and finally sorting// columns.(dynamicPartitionColumns ++ writerBucketSpec.map(_.bucketIdExpression) ++ sortColumns).map(SortOrder(_, Ascending))}

所以说 如果 spark.sql.maxConcurrentOutputFileWriters为0(默认值为0),则会加上Sort逻辑计划,具体的实现可以参考SPARK-37287
如果spark.sql.maxConcurrentOutputFileWriters为0(默认值为0)且 sortColumns为空(大部分情况下为空,除非建表是partition加上bucket),则不会加上Sort逻辑计划

FileFormatWriter 中的dataWriter的选择

InsertIntoHadoopFsRelationCommandInsertIntoHiveTable 这两个物理计划中,最终写入文件/数据的时候,会调用到FileFormatWriter.write方法,这里有个concurrentOutputWriterSpecFunc函数变量的设置:

      val concurrentOutputWriterSpecFunc = (plan: SparkPlan) => {val sortPlan = createSortPlan(plan, requiredOrdering, outputSpec)createConcurrentOutputWriterSpec(sparkSession, sortPlan, sortColumns)}val writeSpec = WriteFilesSpec(description = description,committer = committer,concurrentOutputWriterSpecFunc = concurrentOutputWriterSpecFunc)executeWrite(sparkSession, plan, writeSpec, job)

设置concurrentOutputWriterSpecFunc的代码如下:

  private def createConcurrentOutputWriterSpec(sparkSession: SparkSession,sortPlan: SortExec,sortColumns: Seq[Attribute]): Option[ConcurrentOutputWriterSpec] = {val maxWriters = sparkSession.sessionState.conf.maxConcurrentOutputFileWritersval concurrentWritersEnabled = maxWriters > 0 && sortColumns.isEmptyif (concurrentWritersEnabled) {Some(ConcurrentOutputWriterSpec(maxWriters, () => sortPlan.createSorter()))} else {None}}

如果 spark.sql.maxConcurrentOutputFileWriters为0(默认值为0),则ConcurrentOutputWriterSpec为None
如果 spark.sql.maxConcurrentOutputFileWriters大于0sortColumns为空(大部分情况下为空,除非建表是partition加上bucket),则为Some(ConcurrentOutputWriterSpec(maxWriters, () => sortPlan.createSorter())

其中executeWrite会调用WriteFilesExec.doExecuteWrite方法,从而调用FileFormatWriter.executeTask,这里就涉及到dataWriter选择:

    val dataWriter =if (sparkPartitionId != 0 && !iterator.hasNext) {// In case of empty job, leave first partition to save meta for file format like parquet.new EmptyDirectoryDataWriter(description, taskAttemptContext, committer)} else if (description.partitionColumns.isEmpty && description.bucketSpec.isEmpty) {new SingleDirectoryDataWriter(description, taskAttemptContext, committer)} else {concurrentOutputWriterSpec match {case Some(spec) =>new DynamicPartitionDataConcurrentWriter(description, taskAttemptContext, committer, spec)case _ =>new DynamicPartitionDataSingleWriter(description, taskAttemptContext, committer)}}

这里其实会根据 concurrentOutputWriterSpec来选择不同的dataWriter,默认情况下为DynamicPartitionDataSingleWriter
否则就会为DynamicPartitionDataConcurrentWriter
这两者的区别,见下文

Spark中为什么会加上Sort

至于Spark在写入文件的时候会加上Sort,这个是跟写入的实现有关的,也就是DynamicPartitionDataSingleWriterDynamicPartitionDataConcurrentWriter的区别:

  • DynamicPartitionDataSingleWriter 在任何时刻,只有一个writer在写文件,这能保证写入的稳定性,不会在写入文件的时候消耗大量的内存,但是速度会慢
  • DynamicPartitionDataConcurrentWriter 会有多个 writer 同时写文件,能加快写入文件的速度,但是因为多个文件的同时写入,可能会导致OOM

对于DynamicPartitionDataSingleWriter 会根据partition或者bucket作为最细粒度来作为writer的标准,如果相邻的两条记录所属不同的partition或者bucket,则会切换writer,所以说如果不根据partition或者bucket排序的话,会导致writer频繁的切换,这会大大降低文件的写入速度。所以说需要根据partition或者bucket进行排序。

参考

  1. [SPARK-37287][SQL] Pull out dynamic partition and bucket sort from FileFormatWriter
  2. [SQL] Allow FileFormatWriter to write multiple partitions/buckets without sort

这篇关于Spark中多分区写文件前可以不排序么的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714721

相关文章

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Mysql表如何按照日期字段的年月分区

《Mysql表如何按照日期字段的年月分区》:本文主要介绍Mysql表如何按照日期字段的年月分区的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、创键表时直接设置分区二、已有表分区1、分区的前置条件2、分区操作三、验证四、注意总结一、创键表时直接设置分区

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常