一文详解Java Stream的sorted自定义排序

2025-06-22 17:50

本文主要是介绍一文详解Java Stream的sorted自定义排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte...

一、sorted 操作的基础原理

Java Stream 的sorted()方法用于对流中的元素进行排序,分为两种形式:

  • 自然排序:要求元素实现Comparable接口,调用Stream.sorted()
  • 自定义排序:通过Comparator指定排序规则,调用Stream.sorted(Comparator)

核心特性

  • 有状态操作js:需缓存所有元素才能进行排序
  • 稳定性:默认使用 TimSort 算法(归并排序变体),保证稳定排序
  • 并行流优化:并行流使用多线程分治策略提升性能
// 自然排序示例
List<Integer> numbers = Arrays.asList(5, 3, 4, 1, 2);
List<Integer> sorted = numbers.stream()
    .sorted()  // 依赖Integer实现的Comparable接口
    .collect(Collectors.China编程toList());  // [1, 2, 3, 4, 5]
 
// 自定义排序示例
List<String> words = Arrays.asList("apple", "Banana", "cherry");
List<String> caseInsensitive = words.stream()
    .sorted(String.CASE_INSENSITIVE_ORDER)  // 忽略大小写排序
    .collect(Collectors.toList());  // [apple, Banana, cherry]

二、自定义排序的实现方式

1. Comparator 接口的 Lambda 实现

通过Comparator.comparing工厂方法简化实现:

// 按字符串长度排序
List<String> words = Arrays.asList("apple", China编程"grape", "banana");
words.stream()
    .sorted(Comparator.comparing(String::length))
    .forEach(System.out::println);  // apple → grape → banana
 
// 复杂对象多字段排序(先按年龄降序,再按姓名升序)
ListChina编程<User> users = Arrays.asList(
    new User("Alice", 25),
    new User("Bob", 20),
    new User("Charlie", 25)
);
users.stream()
    .sorted(Comparator.comparingInt(User::getAge).reversed()
        .thenComparing(User::getName))
    .forEach(u -> System.out.printf("%s: %d%n", u.getName(), u.getAge()));
/* 输出:
Alice: 25
Charlie: 25
Bob: 20
*/

2. 传统 Comparator 实现类

适用于复杂排序逻辑复用:

class UserAgeComparator implements Comparator<User> {
    @Override
    public int compare(User u1, User u2) {
        return Integer.compare(u1.getAge(), u2.getAge());
    }
}
 
// 使用自定义Comparator
users.stream()
    .sorted(new UserAgeComparator())
    .collect(Collectors.toList());

3. null 值处理

使用Comparator.nullsFirst()nullsLast()

List<String> wordsWithNulls = Arrays.asList("apple", null, "banana");
wordsWithNulls.stream()
    .sorted(Comparator.nullsLast(String::compareTo))
    .forEach(System.out::println);  // null → apple → banana

三、性能优化策略

1. 预排序与懒排序

对已排序的数据源,避免重复排序:

// 反例:对有序集合重复排序
List<Integer> sortedNumbers = Arrays.asList(1, 2, 3, 4, 5);
sortedNumbers.stream()
    .sorted()  // 不必要的排序操作
    .collect(Collectors.toList());
 
// 优化:确保数据源有序后直接处理

2. 基础类型流避免装箱

对大量数据,使用IntStream/LongStream减少装箱开销:

// 低效:对象流装箱
List<Integer> boxedResult = numbers.stream()
    .sorted()
    .collect(Collectors.toList());
 
// 高效:IntStream直接排序
int[] primitiveResult = numbers.stream()
    .mapToInt(Integer::intValue)
    .sorted()
    .toArray();

3. 并行流排序的分治策略

并行流排序采用平衡二叉树分治算法:

// 并行流排序示例
List<Integer> largeData = IntStream.range(0, 1000000)
    .boxed()
    .collect(Collectors.toList());
 
List<Integer> sortedParallel = largeData.parallelStream()
    .sorted()
    .collect(Collectors.toList());

性能对比(数据来源:JMH 基准测试):

数据规模顺序流排序时间并行流排序时间加速比
1 万元素1.2ms1.8ms0.67x
100 万元素120ms75ms1.6x
1000 万元素1.2s0.5s2.4x

四、特殊场景处理

1. 局部排序(Top-K 问题)

对大数据集取 Top-K,使用PriorityQueue替代全局排序:

// 传统排序:O(n log n)
List<Integer> topKTraditional = numbers.stream()
    .sorted(Comparator.reverseorder())
    .limit(10)
    .collect(Collectors.toList());
 
// 优化:O(n log k)
PriorityQueue<Integer> heap = new PriorityQueue<>(10);
numbers.forEach(n -> {
    if (heap.size() < 10 || n > heap.peek()) {
        heap.offer(n);
        if (heap.size() > 10) heap.poll();
    }
});
List<Integer> topKOptimized = new ArrayList<>(heap);
Collections.sort(topKOptimized, Collections.reverseOrder());

2. 自定义复杂排序逻辑

通过Comparator.thenComparing()组合多个排序条件:

// 按用户年龄、性别、姓名排序
users.stream()
    .sorted(Comparator.comparingInt(User::getAge)
        .thenComparing(User::getGender)
        .thenComparing(User::getName))
    .collect(Collectors.toList());

3. 对象属性为 Optional 的排序

处理可能为空的属性:

class User {
    private Optional<Integer> age;
    // getter省略
}
 
// 按年龄排序,空值放最后
users.stream()
    .sorted(Comparator.comparing(
        u -> u.getAge().orElse(Integer.MAX_VALUE)
    ))
    .collect(Collectors.toList());

五、常见误区与避坑指南

错误使用非线程安全的 Comparator

// 错误:在并行流中使用非线程安全的Comparator
Comparator<String> unsafeComparator = new Comparator<String>() {
    private Collator collator = Collator.getInstance(Locale.CHINA);
    @Override
    public int compare(String s1, String s2) {
        return collator.compare(s1, s2);  // Collator非线程安全
    }
};
words.parallelStream().sorted(unsafeComparator);  // 可能抛出异常
 
// 正确:每次创建新的Comparator实例
words.parallelStream().sorted((s1, s2) -> 
    Collator.getInstance(Locale.CHINA).compare(s1, s2)
);

忽略排序的稳定性

// 错误假设:认为所有排序都是稳定的
List<User> users = Arrays.asList(
    new User("Alice", 25),
    new User("Bob", 25)
);
// 两次排序可能导致顺序不一致(非稳定排序算法)
users.stream()
    .sorted(Comparator.comparingInt(User::getAge))
    .collect(Collectors.toList());

过度使用 sorted 导致性能下降

// 反例:多次排序操作
users.stream()
    .sorted(Comparator.comparingInt(User::getAge))
    .filter(u -> u.getAge() > 18)
    .sorted(Comparator.comparing(User::getName))
    .collect(Collectors.toList());
 
// 优化:合并排序条件,减少排序次数
users.stream()
    .filter(u -> u.getAge() > 18)
    .sorted(Comparator.comparingInt(User::getAge)
        .thenComparing(User::getName))
    .collect(Collectors.toList());

六、性能调优实战

对 100 万随机整数排序的性能对比(单位:ms):

排序方式耗时内存占用备注
传统 Collections.sort ()15080MB需完整集合加载
Stream.sorted()18095MB中间操作,延迟执行
IntStream.sorted()10060MB避免装箱
并行 IntStream.sorted ()65120MB多核 CPU 加速

总结

Java Stream 的sorted操作提供了灵活的自定义排序能力js,但使用时需注意:

  • 基础实现:通过Comparator接口定义排序规则,支持链式组合;
  • 性能优化:优先使用基础类型流,合理选择并行流,避免重复排序;
  • 特殊场景:处理 null 值、局部排序、Optional 属性时需定制逻辑;
  • 避坑指南:注意排序稳定性、线程安全及内存占用。

理解排序操作的底层实现(TimSort 算法)和性能特性,能帮助开发者在实际应用中做出更优选择。在处理大规模数据时,建议结合数据特性(如有序度)和硬件环境(如 CPU 核心数)进行针对性优化,以达到最佳性能。

以上就是一文详解Java Stream的sorted自定义排序的详细内容,更多关于Java Stream sorted自定义排序的资料请关注编程China编程(www.chinasem.cn)其它相关文章!

这篇关于一文详解Java Stream的sorted自定义排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155174

相关文章

使用Go调用第三方API的方法详解

《使用Go调用第三方API的方法详解》在现代应用开发中,调用第三方API是非常常见的场景,比如获取天气预报、翻译文本、发送短信等,Go作为一门高效并发的编程语言,拥有强大的标准库和丰富的第三方库,可以... 目录引言一、准备工作二、案例1:调用天气查询 API1. 注册并获取 API Key2. 代码实现3

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Java利用Spire.XLS for Java设置Excel表格边框

《Java利用Spire.XLSforJava设置Excel表格边框》在日常的业务报表和数据处理中,Excel表格的美观性和可读性至关重要,本文将深入探讨如何利用Spire.XLSforJava库... 目录Spire.XLS for Java 简介与安装Maven 依赖配置手动安装 JAR 包核心API介

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文