spark专题

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

Python连接Spark的7种方法大全

《Python连接Spark的7种方法大全》ApacheSpark是一个强大的分布式计算框架,广泛用于大规模数据处理,通过PySpark,Python开发者能够无缝接入Spark生态系统,本文给大家介... 目录第一章:python与Spark集成概述PySpark 的核心优势基本集成配置步骤启动一个简单的

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

【spark 读写数据】数据源的读写操作

通用的 Load/Save 函数 在最简单的方式下,默认的数据源(parquet 除非另外配置通过spark.sql.sources.default)将会用于所有的操作。 Parquet 是一个列式存储格式的文件,被许多其他数据处理系统所支持。Spark SQL 支持对 Parquet 文件的读写还可以自动的保存源数据的模式 val usersDF = spark.read.load("e

Spark数据介绍

从趋势上看,DataFrame 和 Dataset 更加流行。 示例场景 数据仓库和 BI 工具集成: 如果你需要处理存储在数据仓库中的结构化数据,并且希望与 BI 工具集成,那么 DataFrame 和 Dataset 是首选。 机器学习流水线: 在构建机器学习流水线时,使用 DataFrame 和 Dataset 可以更好地管理数据流,并且可以方便地与 MLlib 集成。 实时数据处理:

Mac搭建华为云平台Hadoop+spark步骤

1、安装终端和文件传输软件 下载、安装、配置 详戳数据平台搭建文件夹 Transmit 用于文件传输 iTerm2    用于终端 2、连接与登录 mac 使用iTerm2快捷登录远程服务器 Mac Transmit连接 (密码不可复制,手动输入) 3、安装jdk 4、修改主机名 Linux系统下如何修改主机名 4、安装配置hadoop

Spark-在集群上运行Spark

Spark-在集群上运行Spark

Spark—数据读取和保存

Spark—数据读取和保存

Spark源码分析之Spark Shell(上)

终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧。不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的。另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口。 先来介绍一下Spark-shell是什么? Spark-shell是提供给用户即时交互的一个命令窗口,你可以在里面编写spark代码,然后根据你的命令立即进行

[大数据之Spark]——快速入门

本篇文档是介绍如何快速使用spark,首先将会介绍下spark在shell中的交互api,然后展示下如何使用java,scala,python等语言编写应用。可以查看 编程指南了解更多的内容。 为了良好的阅读下面的文档,最好是结合实际的练习。首先需要下载spark,然后安装hdfs,可以下载任意版本的hdfs。 Spark Shell 交互 基本操作 Spark Shell提供给用

周期性清除Spark Streaming流状态的方法

在Spark Streaming程序中,我们经常需要使用有状态的流来统计一些累积性的指标,比如各个商品的PV。简单的代码描述如下,使用mapWithState()算子: 现在的问题是,PV并不是一直累加的,而是每天归零,重新统计数据。要达到在凌晨0点清除状态的目的,有以下两种方法。 编写脚本重启Streaming程序 用crontab、Azkaban等在凌晨0点调度执行下面的Shell脚本

Spark SQL重点知识总结

一、Spark SQL的概念理解 Spark SQL是spark套件中一个模板,它将数据的计算任务通过SQL的形式转换成了RDD的计算,类似于Hive通过SQL的形式将数据的计算任务转换成了MapReduce。 Spark SQL的特点:1、和Spark Core的无缝集成,可以在写整个RDD应用的时候,配置Spark SQL来完成逻辑实现。2、统一的数据访问方式,Spark SQL提供标准化的

Apache Spark3.0什么样?一文读懂Apache Spark最新技术发展与展望

简介: 阿里巴巴高级技术专家李呈祥带来了《Apache Spark 最新技术发展和3.0+ 展望》的全面解析,为大家介绍了Spark在整体IT基础设施上云背景下的新挑战和最新技术进展,同时预测了Spark 3.0即将重磅发布的新功能。 2019阿里云峰会·上海开发者大会于7月24日盛大开幕,在本次峰会的开源大数据专场上,阿里巴巴高级技术专家李呈祥带来了《Apache Spark 最新技术发展和

Spark Core源码精读计划7 | Spark执行环境的初始化

推荐阅读 《Spark源码精度计划 | SparkConf》 《Spark Core源码精读计划 | SparkContext组件初始化》 《Spark Core源码精读计划3 | SparkContext辅助属性及后初始化》 《Spark Core源码精读计划4 | SparkContext提供的其他功能》 《Spark Core源码精读计划5 | 事件总线及ListenerBus》 《Spa

Spark Core源码精读计划3 | SparkContext辅助属性及后初始化

推荐阅读 《关于MQ面试的几件小事 | 消息队列的用途、优缺点、技术选型》         《关于MQ面试的几件小事 | 如何保证消息队列高可用和幂等》 《关于MQ面试的几件小事 | 如何保证消息不丢失》 《关于MQ面试的几件小事 | 如何保证消息按顺序执行》 《关于MQ面试的几件小事 | 消息积压在消息队列里怎么办》 《关于Redis的几件小事 | 使用目的与问题及线程模型》 《关于Red

Spark 全套知识体系,终于搞到了!

福利手慢无 ☆☞ 廖雪峰的大数据开发必备教程-Spark视频资料终于免费啦!限额领取~ 2019年已过去3/4,年初许下的愿实现了吗?可爱的程序员们都有哪些愿望呢? 找个女朋友。升级电脑、键盘、鼠标等。来一次说走就走的旅行。升职&加薪。…… 说起“升职&加薪”,一向“多金”的程序员们,今年的职场晋升似乎并非那么顺畅。说是大环境所致,这也没错。 但有一部

Structured Streaming | Apache Spark中处理实时数据的声明式API

关于Spark的相关文章在这里: 《Spark面对OOM问题的解决方法及优化总结》 《Spark 动态资源分配(Dynamic Resource Allocation) 解析》 《Apache Spark在海致大数据平台中的优化实践》 《Spark/Flink广播实现作业配置动态更新》 《Spark SQL读数据库时不支持某些数据类型的问题》 《阿里云Spark Shuffle的优化》 《Spa

Spark源码阅读的正确打开方式

Spark发展至今,应该说已经非常成熟了。是大数据计算领域不得不学习的框架。尤其是Spark在稳定性和社区发展的成熟度方面,吊打其他的大数据处理框架。 Spark至今只经历过1.x、2.x和3.x三个大版本的变化,在核心实现上,我们在Github能看到的最早的实现是0.5版本,这个版本只有1万多行代码,就把Spark的核心功能实现了。 当然我们不可能从这么古老的版本看,假如你接触过Spar

Kylin使用Spark构建Cube

Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc. 开发并贡献至开源社区。它能在亚秒内查询巨大的Hive表。下面是单机安装采坑记,直接上配置和问题解决。找一台干净的机器,把hadoop hive hbase从原有节点分别拷贝一份,主要目的是配置文件,可以不在kylin所在机器

Spark Streaming整合log4j、Flume与Kafka的案例

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 来源:作者TAI_SPARK,http://suo.im/5w7LF8 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 1.框架 2.log4j完成模拟日志输出 设置模拟日志格式,log4j.properties: log4j.rootLogger = INFO,stdo

数据倾斜?Spark 3.0 AQE专治各种不服

Spark3.0已经发布半年之久,这次大版本的升级主要是集中在性能优化和文档丰富上,其中46%的优化都集中在Spark SQL上,SQL优化里最引人注意的非Adaptive Query Execution莫属了。 Adaptive Query Execution(AQE)是英特尔大数据技术团队和百度大数据基础架构部工程师在Spark 社区版本的基础上,改进并实现的自适应执行引擎。近些年来,S

Spark学习之路 (十四)SparkCore的调优之资源调优JVM的GC垃圾收集器

《2021年最新版大数据面试题全面开启更新》 欢迎关注github《大数据成神之路》 目录 一、概述 二、垃圾收集器(garbage collector (GC)) 是什么? 三、为什么需要GC? 四、为什么需要多种GC? 五、对象存活的判断 六、垃圾回收算法 6.1 标记 -清除算法 6.2 复制算法 6.3 标记-整理算法 6.4 分代收集算法 七、垃圾收集器 7.1 Serial收集器

Spark学习之路 (十三)SparkCore的调优之资源调优JVM的基本架构

《2021年最新版大数据面试题全面开启更新》 欢迎关注github《大数据成神之路》   目录 一、JVM的结构图 1.1 Java内存结构 1.2 如何通过参数来控制各区域的内存大小 1.3 控制参数 1.4 JVM和系统调用之间的关系 二、JVM各区域的作用 2.1 Java堆(Heap) 2.2 方法区(Method Area) 2.3 程序计数器(Program Counter R

Spark学习之路 (十二)SparkCore的调优之资源调优

《2021年最新版大数据面试题全面开启更新》 欢迎关注github《大数据成神之路》 目录 一、概述 二、Spark作业基本运行原理 三、资源参数调优 3.1 num-executors 3.2 executor-memory 3.3 executor-cores 3.4 driver-memory 3.5 spark.default.parallelism 3.6 spark.storag