数据挖掘实战-基于决策树算法构建北京市空气质量预测模型

本文主要是介绍数据挖掘实战-基于决策树算法构建北京市空气质量预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.项目背景

2.项目简介

2.1项目说明

2.2数据说明

2.3技术工具

3.算法原理

4.项目实施步骤

4.1理解数据

4.2数据预处理

4.3探索性数据分析

4.4特征工程

4.5模型构建

4.6模型评估

5.实验总结

源代码 


1.项目背景

        随着城市化进程的加速,空气质量问题日益受到人们的关注。北京市作为中国的首都,其空气质量状况更是备受瞩目。为了更好地了解和预测北京市的空气质量,本实验旨在基于决策树算法构建一个空气质量预测模型。

        通过构建这个模型,我们期望能够为相关部门提供科学依据,以便更有效地制定空气质量改善策略。同时,公众也可以通过这个模型了解未来空气质量趋势,提前做好防护措施。为了构建这个模型,我们将收集北京市过去一段时间内的空气质量数据,包括但不限于PM2.5、PM10、NO2、SO2等主要污染物的浓度。此外,我们还将收集可能影响空气质量的多种因素,如气象条件(温度、湿度、风速、风向等)、地理位置、季节变化等。        

2.项目简介

2.1项目说明

        通过分析这些数据,我们将利用决策树算法建立预测模型。决策树算法具有直观易懂、分类效果好等优点,适合用于此类预测问题。我们将采用适当的方法对模型进行训练和优化,以提高预测精度。最终,我们将评估模型的预测效果,并探讨其在实际应用中的可行性和潜在价值。希望通过本实验,能为北京市的空气质量改善工作提供一定的支持。

2.2数据说明

         原始数据共有2155条,9个特征变量,部分数据如下图:

2.3技术工具

Python版本:3.9

代码编辑器:jupyter notebook

3.算法原理

  决策树( Decision Tree) 又称为判定树,是数据挖掘技术中的一种重要的分类与回归方法,它是一种以树结构(包括二叉树和多叉树)形式来表达的预测分析模型。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。一般,一棵决策树包含一个根节点,若干个内部结点和若干个叶结点。叶结点对应于决策结果,其他每个结点对应于一个属性测试。每个结点包含的样本集合根据属性测试的结果划分到子结点中,根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定的测试序列。决策树学习的目的是产生一棵泛化能力强,即处理未见示例强的决策树。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树的构建

特征选择:选取有较强分类能力的特征。

决策树生成:典型的算法有 ID3 和 C4.5, 它们生成决策树过程相似, ID3 是采用信息增益作为特征选择度量, 而 C4.5 采用信息增益比率。

决策树剪枝:剪枝原因是决策树生成算法生成的树对训练数据的预测很准确, 但是对于未知数据分类很差, 这就产生了过拟合的现象。涉及算法有CART算法。

决策树的划分选择

熵:物理意义是体系混乱程度的度量。

信息熵:表示事物不确定性的度量标准,可以根据数学中的概率计算,出现的概率就大,出现的机会就多,不确定性就小(信息熵小)。

决策树的剪枝

剪枝:顾名思义就是给决策树 "去掉" 一些判断分支,同时在剩下的树结构下仍然能得到不错的结果。之所以进行剪枝,是为了防止或减少 "过拟合现象" 的发生,是决策树具有更好的泛化能力。

具体做法:去掉过于细分的叶节点,使其回退到父节点,甚至更高的节点,然后将父节点或更高的叶节点改为新的叶节点。

剪枝的两种方法:

预剪枝:在决策树构造时就进行剪枝。在决策树构造过程中,对节点进行评估,如果对其划分并不能再验证集中提高准确性,那么该节点就不要继续王下划分。这时就会把当前节点作为叶节点。

后剪枝:在生成决策树之后再剪枝。通常会从决策树的叶节点开始,逐层向上对每个节点进行评估。如果剪掉该节点,带来的验证集中准确性差别不大或有明显提升,则可以对它进行剪枝,用叶子节点来代填该节点。

注意:决策树的生成只考虑局部最优,相对地,决策树的剪枝则考虑全局最优。        

4.项目实施步骤

4.1理解数据

# 导入第三方库
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(font='SimHei')
warnings.filterwarnings('ignore')
# 读取数据
df = pd.read_excel('北京市空气质量数据.xlsx')
df.head() # 查看数据前五行

4.2数据预处理

4.3探索性数据分析

plt.scatter(data=df,x='AQI',y='PM2.5') # 做出AQI和PM2.5的散点图
plt.show()

y = df['质量等级'].value_counts().values  # 获取数值
labels = df['质量等级'].value_counts().index # 获取标签
plt.pie(y,labels=labels, # 设置饼图标签autopct='%.2f%%', # 格式化输出百分比)
plt.title("空气质量等级")
plt.show()

sns.countplot(df['质量等级']) # 条形图
plt.show()

 

times = df['日期']
y1 = df['AQI']
y2 = df['PM2.5']
plt.figure(figsize=(20,8))
plt.plot(times,y1,label='AQI') # 画出AQI的折线图
plt.plot(times,y2,label='PM2.5')# 画出PM2.5的折线图
plt.legend(fontsize=20)
plt.show()

# 相关系数热力图
sns.heatmap(df.corr(),vmax=1,annot=True,linewidths=0.5,cbar=False,cmap='YlGnBu',annot_kws={'fontsize':14})
plt.title('各个因素之间的相关系数',fontsize=16)
plt.show()

4.4特征工程

编码处理

# 对目标变量-质量等级进行编码处理
df['质量等级'].replace({'优':0,'良':1,'轻度污染':2,'中度污染':3,'严重污染':4,'重度污染':5},inplace=True)

准备建模数据,即目标变量和特征变量,然后拆分数据集为训练集和测试集 

from sklearn.model_selection import train_test_split
# 准备数据
X = df.drop(['质量等级','日期'],axis=1) # 选择特征变量
y = df['质量等级']
# 划分数据集,其中测试集比例为0.2
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
print('训练集大小:',X_train.shape[0])
print('测试集大小:',X_test.shape[0])

 

4.5模型构建

# 构建逻辑回归模型
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train,y_train)
print('逻辑回归模型准确率:',lr.score(X_test,y_test))

# 构建KNN模型
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
print('KNN模型准确率:',knn.score(X_test,y_test))

# 构建决策树模型
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier()
tree.fit(X_train,y_train)
print('决策树模型准确率:',tree.score(X_test,y_test))

通过对比模型准确率可以发现决策树模型效果最好,准确率100% 

4.6模型评估

from sklearn.metrics import f1_score,r2_score,confusion_matrix,classification_report,auc,roc_curve
# 模型评估
y_pred = tree.predict(X_test)
print('模型的R方值:',r2_score(y_test,y_pred))
print('模型混淆矩阵:','\n',confusion_matrix(y_test,y_pred))
print('模型分类报告:','\n',classification_report(y_test,y_pred))

5.实验总结

        通过基于决策树算法构建的北京市空气质量预测模型的实验研究,我们在多方面取得了显著的进展。首先,我们成功地整合了来自气象、环保、交通等多个领域的大量数据,形成了一个全面而综合的空气质量分析框架。

        在模型构建过程中,决策树算法展现出了出色的性能。其对于非线性关系的适应性以及对多源数据的高效整合使得我们能够更准确地预测未来空气质量的变化趋势。模型的可解释性和直观性使得我们能够深入理解各个因素对空气质量的影响,为决策者提供了有力的支持。

        此外,我们的研究不仅在理论上取得了显著成果,同时也具有广泛的实际应用价值。通过对未来空气质量的精准预测,政府和环保机构可以更有效地制定应对措施,从而最大限度地降低污染对居民健康的潜在威胁。这种精准的环境管理有望推动城市可持续发展,改善居民生活质量。

        综上所述,本次实验不仅在空气质量预测领域取得了实质性的进展,而且为将数据驱动的方法应用于环境科学领域提供了有力的范例。我们的研究不仅为北京市的空气质量管理提供了有力的支持,同时也为其他城市和地区的环境科学研究提供了宝贵的经验和启示。

心得与体会:

通过这次Python项目实战,我学到了许多新的知识,这是一个让我把书本上的理论知识运用于实践中的好机会。原先,学的时候感叹学的资料太难懂,此刻想来,有些其实并不难,关键在于理解。

在这次实战中还锻炼了我其他方面的潜力,提高了我的综合素质。首先,它锻炼了我做项目的潜力,提高了独立思考问题、自我动手操作的潜力,在工作的过程中,复习了以前学习过的知识,并掌握了一些应用知识的技巧等

在此次实战中,我还学会了下面几点工作学习心态:

1)继续学习,不断提升理论涵养。在信息时代,学习是不断地汲取新信息,获得事业进步的动力。作为一名青年学子更就应把学习作为持续工作用心性的重要途径。走上工作岗位后,我会用心响应单位号召,结合工作实际,不断学习理论、业务知识和社会知识,用先进的理论武装头脑,用精良的业务知识提升潜力,以广博的社会知识拓展视野。

2)努力实践,自觉进行主角转化。只有将理论付诸于实践才能实现理论自身的价值,也只有将理论付诸于实践才能使理论得以检验。同样,一个人的价值也是透过实践活动来实现的,也只有透过实践才能锻炼人的品质,彰显人的意志。

3)提高工作用心性和主动性。实习,是开端也是结束。展此刻自我面前的是一片任自我驰骋的沃土,也分明感受到了沉甸甸的职责。在今后的工作和生活中,我将继续学习,深入实践,不断提升自我,努力创造业绩,继续创造更多的价值。

这次Python实战不仅仅使我学到了知识,丰富了经验。也帮忙我缩小了实践和理论的差距。在未来的工作中我会把学到的理论知识和实践经验不断的应用到实际工作中,为实现理想而努力。

源代码 

# 导入第三方库
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(font='SimHei')
warnings.filterwarnings('ignore')
# 读取数据
df = pd.read_excel('北京市空气质量数据.xlsx')
df.head() # 查看数据前五行
df.shape # 查看数据大小
df.info() # 查看数据基本信息
df.describe() # 查看数值型变量的描述性统计
df.dropna(inplace=True) # 删除缺失值
df.drop_duplicates(inplace=True) # 删除重复值
df['质量等级'].value_counts() # 查看目标变量-质量等级的数据情况
df = df[df['质量等级']!='无']  # 剔除质量等级为“无”的数据
df['质量等级'].value_counts()
plt.scatter(data=df,x='AQI',y='PM2.5') # 做出AQI和PM2.5的散点图
plt.show()
y = df['质量等级'].value_counts().values  # 获取数值
labels = df['质量等级'].value_counts().index # 获取标签
plt.pie(y,labels=labels, # 设置饼图标签autopct='%.2f%%', # 格式化输出百分比)
plt.title("空气质量等级")
plt.show()
sns.countplot(df['质量等级']) # 条形图
plt.show()
times = df['日期']
y1 = df['AQI']
y2 = df['PM2.5']
plt.figure(figsize=(20,8))
plt.plot(times,y1,label='AQI') # 画出AQI的折线图
plt.plot(times,y2,label='PM2.5')# 画出PM2.5的折线图
plt.legend(fontsize=20)
plt.show()
# 相关系数热力图
sns.heatmap(df.corr(),vmax=1,annot=True,linewidths=0.5,cbar=False,cmap='YlGnBu',annot_kws={'fontsize':14})
plt.title('各个因素之间的相关系数',fontsize=16)
plt.show()
# 对目标变量-质量等级进行编码处理
df['质量等级'].replace({'优':0,'良':1,'轻度污染':2,'中度污染':3,'严重污染':4,'重度污染':5},inplace=True)
from sklearn.model_selection import train_test_split
# 准备数据
X = df.drop(['质量等级','日期'],axis=1) # 选择特征变量
y = df['质量等级']
# 划分数据集,其中测试集比例为0.2
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
print('训练集大小:',X_train.shape[0])
print('测试集大小:',X_test.shape[0])
# 构建逻辑回归模型
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train,y_train)
print('逻辑回归模型准确率:',lr.score(X_test,y_test))
# 构建KNN模型
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
print('KNN模型准确率:',knn.score(X_test,y_test))
# 构建决策树模型
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier()
tree.fit(X_train,y_train)
print('决策树模型准确率:',tree.score(X_test,y_test))
from sklearn.metrics import f1_score,r2_score,confusion_matrix,classification_report,auc,roc_curve
# 模型评估
y_pred = tree.predict(X_test)
print('模型的R方值:',r2_score(y_test,y_pred))
print('模型混淆矩阵:','\n',confusion_matrix(y_test,y_pred))
print('模型分类报告:','\n',classification_report(y_test,y_pred))

这篇关于数据挖掘实战-基于决策树算法构建北京市空气质量预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681543

相关文章

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢