通过 ChatGPT 的 Function Call 查询数据库

2024-02-03 07:28

本文主要是介绍通过 ChatGPT 的 Function Call 查询数据库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 用 Function Calling 的方式实现手机流量包智能客服的例子。

def get_sql_completion(messages, model="gpt-3.5-turbo"):response = client.chat.completions.create(model=model,messages=messages,temperature=0,tools=[{  # 摘自 OpenAI 官方示例 https://github.com/openai/openai-cookbook/blob/main/examples/How_to_call_functions_with_chat_models.ipynb"type": "function","function": {"name": "ask_database","description": "Use this function to answer user questions about packages. \Output should be a fully formed SQL query.","parameters": {"type": "object","properties": {"query": {"type": "string","description": f"""SQL query extracting info to answer the user's question.SQL should be written using this database schema:{database_schema_string}The query should be returned in plain text, not in JSON.The query should only contain grammars supported by SQLite.""",}},"required": ["query"],}}}],)return response.choices[0].message
#  描述数据库表结构
database_schema_string = """
CREATE TABLE packages (id INT PRIMARY KEY NOT NULL, -- 主键,不允许为空package_name STR NOT NULL, -- 套餐名称,不允许为空monthly_fee INT NOT NULL, -- 月费,单位元,不允许为空flow_size INT NOT NULL, -- 流量大小,单位G,不允许为空condition STR -- 购买的限制条件,允许为空
);
"""
import sqlite3# 创建数据库连接
conn = sqlite3.connect(':memory:')
cursor = conn.cursor()# 创建orders表
cursor.execute(database_schema_string)# 插入4条明确的模拟记录
mock_data = [(1, '经济套餐', 50, 10, None),(2, '畅游套餐', 180, 100, None),(3, '无限套餐', 300, 1000, None),(4, '校园套餐', 150, 200, '仅限在校生'),
]for record in mock_data:cursor.execute('''INSERT INTO packages (id, package_name, monthly_fee, flow_size, condition)VALUES (?, ?, ?, ?, ?)''', record)# 提交事务
conn.commit()
def ask_database(query):cursor.execute(query)records = cursor.fetchall()return recordsprompt = "请问流量最大的套餐是哪个?"
# prompt = "统计每月每件商品的销售额"
# prompt = "哪个用户消费最高?消费多少?"messages = [{"role": "system", "content": "基于 packages 表回答用户问题"},{"role": "user", "content": prompt}
]
print("====messages====")
print_json(messages)response = get_sql_completion(messages)
# print("====first Function Calling====")
# print_json(response)if response.content is None:response.content = ""
messages.append(response)
print("====Function Calling====")
print_json(response)if response.tool_calls is not None:tool_call = response.tool_calls[0]if tool_call.function.name == "ask_database":arguments = tool_call.function.argumentsargs = json.loads(arguments)print("====SQL====")print(args["query"])result = ask_database(args["query"])print("====DB Records====")print(result)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": "ask_database","content": str(result)})response = get_sql_completion(messages)print("====最终回复====")print(response.content)

这篇关于通过 ChatGPT 的 Function Call 查询数据库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/673379

相关文章

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首