细说算法-------快速排序QuickSort

2024-01-24 23:58

本文主要是介绍细说算法-------快速排序QuickSort,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:

一、快速排序思想介绍

二、实现的三步骤(分解、子问题求解、合并)

三、C++代码实现

四、时间空间复杂度分析

------------------------------------------------------------------------分割线-----------------------------------------------------------------------------

一、快速排序思想介绍

快速排序(QuickSort)是对冒泡排序(BubbleSort)的一种改进。排序效率在同为O(N*logN)的几种排序方法中效率较高,再加上快速排序算法是  分治策略(Divide-and-ConquerMethod)的典型应用。因此很多软件公司的笔试面试,还有大大小的程序方面的考试中也常常出现快速排序的身影。博主就在蓝桥杯竞赛上遇到过。

 

快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的三个序列:第一个序列中所有的元素均不大于基准元素、第二个序列是基准元素、第三个序列中所有的元素均不小于基准元素。由于第二个序列已经处于正确位置,因此需要再按此方法对第一个和第三个序列分别进行排序,整个排序过程可以递归进行,最终可以使得整个序列变成有序序列。


 二、实现的三步骤(分解、子问题求解、合并)

快速排序算法的基本思想是基于分治策略的,利用分治可将快速排序的基本思想描述如下:设当前待排序的序列为R[ low : high ] ,其中low <= high,如果序列的规模足够小则直接进行排序,否则分三步处理:

1、分解

在R[ low :high ]中选定一个元素作为基准元素(pivot),该基准元素的最终的位置(pivotpos)在划分的过程中确定。将比R[ pivotpos]大的数全放到它的右边R[pivotpos+1 : high],小于或等于它的数全放到它的左边R[low : pivotpos-1 ]。

 

注意:基准元素如何选定,选哪个元素?基准元素最终的排序位置,在划分的过程中确定,如何确定?不要着急,下面讲解。

 

2、求解子问题

对两个子序列R[low :pivotpos-1 ]和R[pivotpos+1 : high]分别通过递归调用快速排序。

 

3、合并

由于对子序列R[low :pivotpos-1 ]和R[pivotpos+1 : high]的排序是就地进行的,所以在子序列R[low : pivotpos-1 ]和R[pivotpos+1 : high]都排序结束后,合并步骤无须做什么,整个序列R[ low : high ]就排好序了。

 

基准元素(pivot)的选取。最终位置(pivotpos)的确定。

快速排序要选定基准元素,选取基准元素应该遵循平衡子问题的原则:即使得划分后的两个子序列的长度尽量相同。基准元素的选择方法有很多种,常见的方式是把待排序列的首元素作为基准元素。

 

基准元素最终位置(pivotpos)的确定

快速排序中基准元素对序列进行划分,从而实现分治。假定待排序列为R[ low : high ],该划分过程以第一个元素为基准元素。

1、设定两个参数i和j,他们的初值分别为待排序列的下界和上界,即i=low,j=high。

2、选取待排序列的第一个元素R[low]为基准元素,并将该值赋值给变量pivot。

3、令j自j位置开始向左扫面,如果j位置所对应的元素的值大于等于pivot,则j前移一个位置(即j--)。重复该过程,直到找到第一个小于pivot的元素R[j],将R[j]和R[i]进行交换,i++。其实交换后R[j]所对应的元素就是pivot。

4、令i自i位置开始向右扫描,如果i位置所对应的元素的值小于等于pivot,则i后移(即i++)。重复该过程,直至找到第一个大于pivot的元素R[i],将R[i]与R[j]进行交换,j--。其实,交换后R[i]所对应的元素就是pivot。

5、重复步骤3、4,交替改变扫描方向,从两端各自往中间靠拢直至i==j。此时i和j指向同一个位置,即基准元素pivot的最终位置。


三、C++代码实现如下:

#include <iostream>  
#include <string>  
using namespace std;  //交换数组中两个元素位置  
void swap(int &a,int & b)   {int tmp;tmp=a;a=b;b=tmp;}  int Partition(int * Arr,int low,int high)    //划分方法  
{  //i和j分别指向数组下界和上界,pivot是待排的第一个元素  int i=low,j=high,pivot=Arr[low];  while (i<j)  {  /* j自j位置开始向左扫面,如果j位置所对应的元素的值大于等于pivot,则j前移一个位置(即j--)。 重复该过程,直到找到第一个小于pivot的元素R[j],将R[j]和R[i]进行交换,i++。 其实交换后R[j]所对应的元素就是pivot。*/  while (i<j && Arr[j]>=pivot)  {  j--;  }  if (i<j)  {  swap(Arr[i++],Arr[j]);//注意这里是交换元素,另外还有挖坑法实现,是元素覆盖。  }  /* 令i自i位置开始向右扫描,如果i位置所对应的元素的值小于等于pivot,则i后移(即i++)。 重复该过程,直至找到第一个大于pivot的元素R[i],将R[i]与R[j]进行交换,j--。 其实,交换后R[i]所对应的元素就是pivot。*/  while (i<j  && Arr[i]<=pivot){i++;}  if (i<j)  {  swap(Arr[i],Arr[j--]);  }  }  /*此时i和j指向同一个位置,即基准元素pivot的最终位置。返回i的值*/  return  i;  
}  
void   QuickSort(int * Arr,int low,int high)    //对数组Arr[low  high]进行快速排序  
{  int pivotpos;   //划分的基本元素所在的位置  if(low<high)    //区间长度大于1时才排序  {  pivotpos=Partition(Arr,low,high);//对Arr[low high]进行划分  QuickSort(Arr,low,pivotpos-1);    QuickSort(Arr,pivotpos+1,high);  }  
}  void main()  
{  int num;  cout<<"请输入要排序元素的个数num="<<endl;  cin>>num;  int *array=new int[num];  cout<<"请给每一个元素赋初值\n";  for (int i=0;i<num;i++)  {  cin>>array[i];  }  QuickSort ( array,  0,num-1);  cout<<"输出排序后的结果"<<endl;  for (int i=0;i<num;i++)  {  cout<<array[i]<<"  ";  }  cout<<endl;  system("PAUSE");  
} 
注意:partition函数有多种实现方式,比如下面:  
int Partition(int * Arr,int low,int high)     
{    int i = low, j = high;    int pivot = Arr[low]; //Arr[low]已经保存,可以被覆盖,即第一个坑    while (i < j)    {    // 从右向左找小于pivot的数来填Arr[low]    while(i < j && Arr[j] >= pivot)     j--;      if(i < j)  {//将Arr[j]填到Arr[i]中,Arr[j]就形成了一个新的坑.  //这里不再是交换元素位置。  Arr[i] = Arr[j];     i++;    }  // 从左向右找大于或等于pivot的数来填Arr[j]    while(i < j && Arr[i] < pivot)    i++;      if(i < j)     {    Arr[j] = Arr[i]; //将Arr[i]填到Arr[j]中,Arr[i]就形成了一个新的坑    j--;    }    }    //退出时,i等于j。将pivot填到这个坑中    Arr[i] = pivot;    //返回调整后基准数的位置  return i;    
} 

四、时间空间复杂度分析

快速排序算法是递归执行,需要一个栈来存放每一层递归调用的必要信息,其最大容量应与递归调用的深度一致。最好的情况下,每次划分较为均匀,递归树的深度为O(logN),故递归所需要的栈空间为O(logN)。最坏情况下,递归树的高度为O(N),所需的栈空间为O(N)。平均情况下,所需栈空间为O(logN)。


这篇关于细说算法-------快速排序QuickSort的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641447

相关文章

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热