Datawhale 零基础入门CV-Task04.模型训练与验证

2024-01-24 09:08

本文主要是介绍Datawhale 零基础入门CV-Task04.模型训练与验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

一个成熟合格的深度学习训练流程至少具备以下功能

  • 在训练集上进行训练,并在验证集上进行验证
  • 模型可以保存最优的权重,并读取权重
  • 记录下训练集和验证集的精度,便于调参

学习目标

  • 理解验证集的作用,并使用训练集和验证集完成训练
  • 学会使用Pytorch环境下的模型读取和加载,并了解调参流程

构造验证集

  • 在机器学习模型的训练过程中,模型是非常容易过拟合的深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。
  • 在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在训练集的泛化效果较差,这种现象称为过拟合。与过拟合相对应的是欠拟合,即模型在训练集上的拟合效果较差
    在这里插入图片描述
  • 如图所示:随着模型复杂度和模型训练轮数的增加,CNN模型在训练集上的误差会降低,但在测试集上的误差会逐渐降低,然后逐渐升高,而我们为了追求的是模型在测试集上的精度越高越好。导致模型过拟合的情况有很多种原因,其中最为常见的情况是模型复杂度太高,导致模型学习到了训练数据的方方面面,学习到了一些细节上的规律
  • 解决问题最好的办法:构建一个与测试集尽可能分布一致的样本集(可称为验证集),在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练
  • 在一般情况下,可以在本地划分出一个验证机出来,进行本地验证。训练集、验证集和测试集份别有不同的作用
    1.训练集:模型用于训练和调整模型参数
    2.验证集:用来验证模型精度和调整模型超参数
    3.测试集:验证模型的泛化能力
  • 因为训练集和验证集是分开的,所以模型在验证集上面的精度在一定程度上可以反映模型的泛化能力。在划分验证集的时候,需要注意验证集的分布应该与测试集尽量保持一致,不然模型在验证集上的精度就失去了指导意义

验证集的划分方式

  • 留出法Hold-Out:直接将训练集划分成两部分,新的训练集和验证集。这种划分方式的优点最为简单直接;缺点是只得到了一份验证集,有可能导致模型在验证集上过拟合。留出法应用场景是数据量比较大的情况
  • 交叉验证法Cross Validation:将训练集划分成K份,将其中的K-1份作为训练集,剩余的1份作为验证集,循环K训练。这种划分方式是所有的训练集都是验证集,最终模型验证精度是K份平均得到。这种方式的优点是验证集精度比较可靠。训练K次可以得到K个有多样性差异的模型;CV验证的缺点是需要训练K次,不适合数据量很大的情况
  • 自助采样法BootStrap:通过有放回的采样方式得到新的训练集和验证集,每次的训练集和验证集都是有区别的。这种划分方式一般适用于数据量较小的情况

模型训练与验证

  • 构造训练集和验证集
  • 每轮进行训练和验证,并根据最优验证集精度保存模型
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=10,shuffle=True,num_workers=10, 
)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=10,shuffle=False,num_workers=10, 
)model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):print('Epoch: ', epoch)train(train_loader, model, criterion, optimizer, epoch)val_loss = validate(val_loader, model, criterion)# 记录下验证集精度if val_loss < best_loss:best_loss = val_losstorch.save(model.state_dict(), './model.pt')
  • 其中每个Epoch的训练代码如下:
def train(train_loader, model, criterion, optimizer, epoch):# 切换模型为训练模式model.train()for i, (input, target) in enumerate(train_loader):c0, c1, c2, c3, c4, c5 = model(data[0])loss = criterion(c0, data[1][:, 0]) + \criterion(c1, data[1][:, 1]) + \criterion(c2, data[1][:, 2]) + \criterion(c3, data[1][:, 3]) + \criterion(c4, data[1][:, 4]) + \criterion(c5, data[1][:, 5])loss /= 6optimizer.zero_grad()loss.backward()optimizer.step()
  • 其中每个Epoch的验证代码如下:
def validate(val_loader, model, criterion):# 切换模型为预测模型model.eval()val_loss = []# 不记录模型梯度信息with torch.no_grad():for i, (input, target) in enumerate(val_loader):c0, c1, c2, c3, c4, c5 = model(data[0])loss = criterion(c0, data[1][:, 0]) + \criterion(c1, data[1][:, 1]) + \criterion(c2, data[1][:, 2]) + \criterion(c3, data[1][:, 3]) + \criterion(c4, data[1][:, 4]) + \criterion(c5, data[1][:, 5])loss /= 6val_loss.append(loss.item())return np.mean(val_loss)

模型保存与加载

  • Pytorch种模型的保存和加载非常简单,比较常见的做法是保存和加载模型参数:
	torch.save(model_object.state_dict(), 'model.pt')model.load_state_dict(torch.load(' model.pt'))

模型调参流程

  • 深度学习原理少但实践性非常强,基本上很多的模型的验证只能通过训练来完成同时深度学习有众多的网络结构和超参数,因此需要反复尝试。训练深度学习模型需要GPU的硬件支持,也需要较多的训练时间。
    在这里插入图片描述

小结

  • 以深度学习模型的训练和验证为基础,讲解了验证集划分方法、模型训练与验证、模型保存和加载以及模型调参流程
  • 需要注意的是模型复杂度是相对的,并不一定模型越复杂越好。

这篇关于Datawhale 零基础入门CV-Task04.模型训练与验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639193

相关文章

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

SpringCloud Stream 快速入门实例教程

《SpringCloudStream快速入门实例教程》本文介绍了SpringCloudStream(SCS)组件在分布式系统中的作用,以及如何集成到SpringBoot项目中,通过SCS,可... 目录1.SCS 组件的出现的背景和作用2.SCS 集成srping Boot项目3.Yml 配置4.Sprin

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

SpringMVC配置、映射与参数处理​入门案例详解

《SpringMVC配置、映射与参数处理​入门案例详解》文章介绍了SpringMVC框架的基本概念和使用方法,包括如何配置和编写Controller、设置请求映射规则、使用RestFul风格、获取请求... 目录1.SpringMVC概述2.入门案例①导入相关依赖②配置web.XML③配置SpringMVC

MySQL索引踩坑合集从入门到精通

《MySQL索引踩坑合集从入门到精通》本文详细介绍了MySQL索引的使用,包括索引的类型、创建、使用、优化技巧及最佳实践,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录mysql索引完整教程:从入门到入土(附实战踩坑指南)一、索引是什么?为什么需要它?1.1 什么

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础