本文主要是介绍Datawhale 零基础入门CV-Task02.数据读取与数据扩增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
主要内容
- 数据读取
- 数据扩增方法
Pytorch读取赛题数据
学习目标
- 学会
Python和Pytorch中图像读取 - 学会扩增方法和
Pytorch读取赛题数据
图像读取
- 由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此需要完成对数据的读取操作,在
Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV
Pillow
Pillow是Python图像处理函数库PIL的一个分支,Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库

- 实现
from PIL import Image,ImageFilter
im = Image.open(r"D:\input\mchar_train\timg.JFIF")
plt.imshow(im)

- 应用模糊滤镜

- 首先可以利用系统自带的画图工具转为
jpg格式 - 实现应用模糊滤镜
from PIL import Image,ImageFilter,ImageFilter
im = Image.open(r"D:\input\mchar_train\timg.jpg")
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg','jpeg')
plt.imshow(im2)

- 图片放缩

Pillow官方文档
OpenCV
OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更强大

- 实现
# 库在前面已经导入过了
import cv2
img = cv2.imread(r"D:\input\mchar_train\mchar_train\000000.png")
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img)

OpenCV官网
OpenCV扩展算法库
数据扩增方法
- 在赛题中需要对图像进行字符识别,因此需要完成数据的读取操作同时也需要完成数据扩增操作
数据扩增介绍
- 数据扩增可以增加训练集的样本,同时可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力

- 数据扩增的作用:数据扩增可以扩展样本空间
数据扩增方法
- 从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别
- 对于图像分类,数据扩增一般不会改变标签:对于物体检测、数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签
常见的数据扩增方法 - 在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。不同的数据扩增方法可以自由进行组合,得到更丰富的数据扩增方法,下面给出以
torchvision为例,常见的数据扩增方法
transforms.CenterCrop:对图片中心进行裁剪
thansforms.ColorJitter:对图像颜色的对比度、饱和度和零度进行变换
transforms.FiveCrop:对图像四个角和中心进行剪裁得到五分图像
transforms.Grayscale:对图像进行灰度变换
transforms.Pad:使用固定值进行像素填充
transforms.RandomAffine:随机仿射变换
transforms.RandomCrop:随机区域裁剪
transforms.RandomHorizontalFlip:随机水平翻转
transforms.RandomRotation:随即旋转
transforms.RandomVerticalFilp:随机垂直翻转

- 对于图像中的字符进行识别,不能进行翻转操作,翻转后可能改变字符原本的含义
常用的数据扩增库
torchvision:pytorch官方提供的数据扩增库,提供了基本的数据扩增方法,可以与torch进行集成,但数据扩增方法种类较少,速度中等
github
imagaug:常用的第三方数据扩增库,提供了多样的数据扩增方法,组合起来比较方便,速度较快
github
albumentations:常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割,物体检测和关键点检测都支持,速度较快
使用文档
Pytorch读取数据
- 在
Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取,所以只需重载一下数据读取的逻辑就可以完成数据的读取
import os, sys, glob, shutil, json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
class SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_labelif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl) + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)
train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open(r"D:\input\mchar_train.json"))
train_label = [train_json[x]['label'] for x in train_json]data = SVHNDataset(train_path, train_label,transforms.Compose([# 缩放到固定尺⼨transforms.Resize((64, 128)),# 随机颜⾊变换transforms.ColorJitter(0.2, 0.2, 0.2),# 加⼊随机旋转transforms.RandomRotation(5),# 将图⽚转换为pytorch 的tesntortransforms.ToTensor(),# 对图像像素进⾏归⼀化transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]))

Dataset:对数据集的封装,提供索引方式的对数据样本进行读取DataLoder:对Dataset进行封装,提供批量读取的迭代读取- 加入
DataLoder后,数据读取代码改写如下
import os, sys, glob, shutil, json
import cv2from PIL import Image
import numpy as npimport torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transformsclass SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_labelif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl) + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]train_loader = torch.utils.data.DataLoader(SVHNDataset(train_path, train_label,transforms.Compose([transforms.Resize((64, 128)),transforms.ColorJitter(0.3, 0.3, 0.2),transforms.RandomRotation(5),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])),batch_size=10, # 每批样本个数shuffle=False, # 是否打乱顺序num_workers=10, # 读取的线程个数
)for data in train_loader:break
- 加入
DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接,此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
- 前者为图像文件,为
batchsize * chanel * height * width次序;后者为字符标签
本章小结
- 对数据读取进行详细了解,学会常见的数据扩增方法和使用,最后使用
Pytorch框架对赛题的数据进行读取
这篇关于Datawhale 零基础入门CV-Task02.数据读取与数据扩增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!