Textual Inversion、DreamBooth、LoRA、InstantID:从低成本进化到零成本实现IP专属的AI绘画模型

本文主要是介绍Textual Inversion、DreamBooth、LoRA、InstantID:从低成本进化到零成本实现IP专属的AI绘画模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年7月份国内有一款定制写真AI工具爆火。一款名为妙鸭相机的AI写真小程序,成功在C端消费者群体中出圈,并在微信、微博和小红书等平台迅速走红,小红书上的话题Tag获得了330多万的浏览量,相关微信指数飙升到了1800万以上。

其他能够提供类似功能例如:LensaAI,Midjourney,DALL-E3,Stable Diffusion,Tiamat。只不过LensaAI和妙鸭相机对于定制图像生成更加专精一些。

这背后用到技术演化,就是Textual Inversion、DreamBooth、LoRA、InstantID这四类,从一开始需要样本数据微调,到2024年1月发布InstantID不需要样本数据微调。

本文跟朋友们分享相关技术。

欢迎关注留言!

Stable Diffusion 简称 SD。

Textual Inversion

为了更好理解Textual Inversion算法,我先回顾下SD词嵌入向量的使用方式。
也可以看我以前的文章。

当我在SD AI上画画时,我会先输入一个提示。这个提示会被一个叫做“tokenizer”的工具拆分成很多小部分,每个小部分都有一个独特的标识,叫做“token_id”。接着,这些“token_id”会在一个已经准备好的词库里找到对应的词嵌入向量。这些词嵌入向量就像是我们提示的“翻译”,让机器能更好地理解。

然后,我会把这些词嵌入向量放在一起,传给CLIP的文本编码器。这个编码器会帮我把这些向量变成一种更容易理解的形式,也就是文本表征。有了这个文本表征,我就可以用一个叫做“交叉注意力机制”的工具来控制我的图像生成了。简单来说,就是我想画什么,机器就能帮我画出什么。
在这里插入图片描述
理解了 SD 词嵌入向量的使用,再来学习 Textual Inversion 这个算法就会非常简单。

Textual Inversion 算法的本质是学习一个全新的词嵌入向量,用于指代定制化的内容。其核心思想便是,对于一个给定的物体或者风格,去学习一个全新的词嵌入向量,并绑定一个符号比如 S*,为其分配一个新的 token_id。这样,每次文生图的时候只需要带上 S*,就能生成我们想要定制化的物体或者风格。

**重点在于,这个过程不需要对整个AI模型进行调整或重新训练,只是在它的词汇库中添加了一个新的词汇而已。**这样做的好处是可以保留AI模型原有的理解能力和创造力,同时又增加了一些个性化的元素。

需要3到5张展示特定概念(比如你的猫)的图片来训练AI。

论文地址:https://arxiv.org/pdf/2208.01618.pdf
https://arxiv.org/pdf/2208.01618.pdf
https://arxiv.org/pdf/2208.01618.pdf
https://arxiv.org/pdf/2208.01618.pdf

Textual Inversion 的训练其实挺简单的,分两步走。

首先,你得给你想要的关键词,比如 S*,配一个新的“身份证”,我们叫它 token_id。然后,给这个新“身份证”初始化一个词嵌入向量。举个例子,如果原来的词库里已经有 20000 个词了,那 S* 的“身份证”就是第 20001 号。

接下来,找个已经训练好的 AI 画画模型,比如 Stable Diffusion 或者 DALL-E 3。在训练的时候,CLIP 文本编码器和 UNet 这些模型的“技能”都不变,就固定在那里。然后,用你提供的 3-5 张图片,按照模型的标准训练方法来训练。这个过程中,只有你给 S* 新初始化的那个词嵌入向量在“学习”。

训练完了,你就得到了一个定制化的词嵌入向量,它能帮你表达出训练图片里的物体或者风格。

这里有两点要注意:
一是这个词嵌入向量是和你选的 AI 绘画模型绑在一起的;
二是 Textual Inversion 还可以同时优化好几个新增的词嵌入向量。

如果你想更深入了解,可以点击链接去看看 Textual Inversion 的训练代码。

https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py

DreamBooth

DreamBooth 论文:https://arxiv.org/abs/2208.12242

Textual Inversion 在训练时,能学习的参数并不多,大概只有512或768个浮点数那么点儿。所以,它在定制化生成方面的能力就有点儿局限。在市场上,如果你想要更个性化的生成效果,大家通常更喜欢用 DreamBooth。

说到 DreamBooth 这个名字,其实挺有意思的。Google 团队打了个比方,说它就像一个摄影棚,你进去拍照后,不仅仅是一张公开可用的图片,还能把你拍的东西放到你梦想的任何场景里。用 DreamBooth 的时候,你上传3~5张图,再加个新的描述词,就能定制一个物体或者一种风格了。后面我放了些图片,你可以看看 DreamBooth 的生成效果有多酷。
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242

在这里插入图片描述

我来给你讲讲这个方案是怎么一回事吧。其实步骤很简单,就两步。

首先,你得挑个不常见的词作为关键词,比如说“CSS”。这个和Textual Inversion有点儿不同,那里的词得绑定全新的词嵌入向量,但这里不用。

然后呢,你得找个已经训练好的AI绘画模型,比如Stable Diffusion或者DALL-E 3。在训练过程中,UNet模型的权重是要打开的。接下来,就按照对应的AI绘画模型的标准训练方法,在你给的3-5张图片上训练一下。

你可能会有个疑问:就用这么几张图去调整UNet那么多参数,模型会不会变得太“偏执”了?比如说,如果你用了3-5张自己小狗的照片去训练,那模型是不是就只会画这一种样式的小狗了?没错,确实会有这个问题。这样训练出来的模型,不管你的prompt是“a CSS dog”还是“a dog”,它都只会画出你训练用的那种小狗。

不过别担心,论文作者已经想到了解决办法,那就是保留损失(preservation loss)。具体操作就是,先用AI绘画模型生成一批小狗的图片,然后在训练DreamBooth的时候,也把这批图像加进去一起训练。这样一来,模型就不会那么“偏执”了。

哦对了,训练DreamBooth的时候,CLIP文本编码器也是可以打开的。实践证明,这样做可以让定制化图像生成的效果更好。

总的来说,Textual Inversion和DreamBooth的区别就在于:前者只是优化一两个词嵌入向量,而后者则是对整个AI绘画模型进行微调。

如果你想更深入了解,可以点击链接去看看 DreamBooth 的训练代码。

https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py

更多内容关注这个用户,以后大部分内容都迁移到这里:欢迎关注

每天学点新技术,生活工作更自如!

我是 李孟聊AI,独立开源软件开发者,SolidUI作者,对于新技术非常感兴趣,专注AI和数据领域,如果对我的文章内容感兴趣,请帮忙关注点赞收藏,谢谢!

这篇关于Textual Inversion、DreamBooth、LoRA、InstantID:从低成本进化到零成本实现IP专属的AI绘画模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/638931

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构